Skip to main content
Top
Published in: Journal of Materials Science 3/2018

13-10-2017 | Ceramics

Modeling the final sintering stage of doped ceramics: mutual interaction between grain growth and densification

Authors: M. M. Gong, R. H. R. Castro, F. Liu

Published in: Journal of Materials Science | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Applying the thermodynamic extremal principle, a model for grain growth and densification in the final stage of sintering of doped ceramics was derived, with segregation-dependent interfacial energies and mobilities (or diffusivities). The model demonstrated an interdependence between the driving forces of grain growth and densification during sintering evolution, observed because the surface energy contributes positively to the driving force of grain growth while the GB energy negatively to the driving force of densification. The model was tested in alumina as a host system, and calculations demonstrate that dopants with more negative GB (or surface) segregation enthalpy or which cause lower GB diffusion coefficient can induce higher relative densities at a given grain size. Comparatively studying yttria- and lanthana-doped alumina, the lanthana doping showed significantly enhanced sintering attributed to the larger La3+ radius causing a more negative GB segregation energy. This present model is expected to help dopant designing to improve control over sintering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Here, ignoring the difference in atomic volume between the three different regions, then the molar fraction will be equivalent to the volume fraction.
 
2
For ceramics (ionic compounds), the diffusion path of the dopant cation should be consistent with the host cation, since the cations generally occupy the same sub-lattice. For the case of isovalent doping, where the same electrostatic interaction acts on these two types of cations, the variation of the surrounding environment due to segregation would produce a similar effect on the diffusion of the host cation and that of the dopant cation. For aliovalent doping, the dopant cation may exhibit different dependence of diffusion on segregation compared to the host cation since, although the dopant cation passes through the same diffusion path as the host cation, the difference in electrostatic interactions due to their own charge differences may have a more pronounced effect on diffusion.
 
3
The relative density during the final stage of sintering is usually above 90%.
 
4
Model calculations show that, at moderate levels of GB segregation and surface segregation (ΔH seg GB  = ΔH seg s  = −40 kJ mol−1) with T = 1300 °C and x B = 1×10−3, when D B0 GB  > 0.02D GB0, solute drag will not exert any observable effect on grain growth and densification.
 
Literature
1.
go back to reference Jorgensen PJ (1965) Modification of sintering kinetics by solute segregation in Al2O3. J Am Ceram Soc 48:207–210CrossRef Jorgensen PJ (1965) Modification of sintering kinetics by solute segregation in Al2O3. J Am Ceram Soc 48:207–210CrossRef
3.
go back to reference Soni KK, Thompson AM, Harmer MP, Williams DB, Chabala JM, Setti RL (1995) Solute segregation to grain boundaries in MgO-doped alumina. Appl Phys Lett 66:2795–2797CrossRef Soni KK, Thompson AM, Harmer MP, Williams DB, Chabala JM, Setti RL (1995) Solute segregation to grain boundaries in MgO-doped alumina. Appl Phys Lett 66:2795–2797CrossRef
4.
go back to reference Fang JX, Thompson AM, Harmer MP, Chan HM (1997) Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina. J Am Ceram Soc 80:2005–2012CrossRef Fang JX, Thompson AM, Harmer MP, Chan HM (1997) Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina. J Am Ceram Soc 80:2005–2012CrossRef
5.
go back to reference Tekeli S, Erdogan M, Aktas B (2004) Influence of α-Al2O3 addition on sintering and grain growth behaviour of 8 mol% Y2O3-stabilised cubic zirconia (c-ZrO2). Ceram Int 30:2203–2209CrossRef Tekeli S, Erdogan M, Aktas B (2004) Influence of α-Al2O3 addition on sintering and grain growth behaviour of 8 mol% Y2O3-stabilised cubic zirconia (c-ZrO2). Ceram Int 30:2203–2209CrossRef
6.
go back to reference Tekeli S, Erdogan M, Aktas B (2004) Microstructural evolution in 8 mol% Y2O3-stabilized cubic zirconia (8YSCZ) with SiO2 addition. Mater Sci Eng A 386:1–9CrossRef Tekeli S, Erdogan M, Aktas B (2004) Microstructural evolution in 8 mol% Y2O3-stabilized cubic zirconia (8YSCZ) with SiO2 addition. Mater Sci Eng A 386:1–9CrossRef
7.
go back to reference Averback RS, Höfler HJ, Hahn H, Logas JC (1992) Sintering and grain growth in nanocrystalline ceramics. Nanostruct Mater 1:173–178CrossRef Averback RS, Höfler HJ, Hahn H, Logas JC (1992) Sintering and grain growth in nanocrystalline ceramics. Nanostruct Mater 1:173–178CrossRef
8.
go back to reference Li JG, Ikegami T, Mori T (2004) Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Mater 52:2221–2228CrossRef Li JG, Ikegami T, Mori T (2004) Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Mater 52:2221–2228CrossRef
9.
go back to reference Bowen P, Carry C (2002) From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol 128:248–255CrossRef Bowen P, Carry C (2002) From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol 128:248–255CrossRef
10.
go back to reference Theunissen GSAM, Winnubst AJA, Burggraaf AJ (1993) Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics. J Eur Ceram Soc 11:315–324CrossRef Theunissen GSAM, Winnubst AJA, Burggraaf AJ (1993) Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics. J Eur Ceram Soc 11:315–324CrossRef
11.
go back to reference Chang CH, Gong MM, Dey S, Liu F, Castro RHR (2015) Thermodynamic stability of SnO2 nanoparticles: the role of interface energies and dopants. J Phys Chem C 119:6389–6397CrossRef Chang CH, Gong MM, Dey S, Liu F, Castro RHR (2015) Thermodynamic stability of SnO2 nanoparticles: the role of interface energies and dopants. J Phys Chem C 119:6389–6397CrossRef
12.
go back to reference Wu LJ, Aguiar JA, Dholabhai PP, Holesinger T, Aoki T, Uberuaga BP, Castro RHR (2015) Interface energies of nanocrystalline doped ceria: effects of manganese segregation. J Phys Chem C 119:27855–27864CrossRef Wu LJ, Aguiar JA, Dholabhai PP, Holesinger T, Aoki T, Uberuaga BP, Castro RHR (2015) Interface energies of nanocrystalline doped ceria: effects of manganese segregation. J Phys Chem C 119:27855–27864CrossRef
13.
go back to reference Dey S, Chang CH, Gong MM, Liu F, Castro RHR (2015) Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies. J Mater Res 30:2991–3002CrossRef Dey S, Chang CH, Gong MM, Liu F, Castro RHR (2015) Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies. J Mater Res 30:2991–3002CrossRef
14.
go back to reference Chen PL, Chen IW (1994) Role of defect interaction in boundary mobility and cation diffusivity of CeO2. J Am Ceram Soc 77:2289–2297CrossRef Chen PL, Chen IW (1994) Role of defect interaction in boundary mobility and cation diffusivity of CeO2. J Am Ceram Soc 77:2289–2297CrossRef
15.
go back to reference Rahaman MN, Manalert R (1998) Grain boundary mobility of BaTiO3 doped with aliovalent cations. J Eur Ceram Soc 18:1063–1071CrossRef Rahaman MN, Manalert R (1998) Grain boundary mobility of BaTiO3 doped with aliovalent cations. J Eur Ceram Soc 18:1063–1071CrossRef
16.
go back to reference Gong MM, Dey S, Wu LJ, Chang CH, Li H, Castro RHR, Liu F (2017) Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttriastabilized zirconia. J Mater Sci Technol 33:251–260CrossRef Gong MM, Dey S, Wu LJ, Chang CH, Li H, Castro RHR, Liu F (2017) Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttriastabilized zirconia. J Mater Sci Technol 33:251–260CrossRef
17.
go back to reference Brook RJ (1982) Fabrication principles for the production of ceramics with superior mechanical properties. Proc Br Ceram Soc 32:7–24 Brook RJ (1982) Fabrication principles for the production of ceramics with superior mechanical properties. Proc Br Ceram Soc 32:7–24
18.
go back to reference Kingery WD (1984) Segregation phenomena at surfaces and at grain boundaries in oxides and carbides. Solid State Ion 12:299–307CrossRef Kingery WD (1984) Segregation phenomena at surfaces and at grain boundaries in oxides and carbides. Solid State Ion 12:299–307CrossRef
19.
go back to reference Nowotny J (1989) Surface and grain boundary segregation in metal oxides. In: Dufour L-C, Monty C, Petot-Ervas G (eds) Surfaces and interfaces of ceramic materials. Springer, Netherlands, pp 205–239CrossRef Nowotny J (1989) Surface and grain boundary segregation in metal oxides. In: Dufour L-C, Monty C, Petot-Ervas G (eds) Surfaces and interfaces of ceramic materials. Springer, Netherlands, pp 205–239CrossRef
20.
go back to reference Powers JD, Glaeser AM (1998) Grain boundary migration in ceramics. Interface Sci 6:23–39CrossRef Powers JD, Glaeser AM (1998) Grain boundary migration in ceramics. Interface Sci 6:23–39CrossRef
21.
go back to reference Glaeser AM (1984) Microstructure development in ceramics: the role of grain growth. J Ceram Assoc Jpn 92:537–546CrossRef Glaeser AM (1984) Microstructure development in ceramics: the role of grain growth. J Ceram Assoc Jpn 92:537–546CrossRef
22.
go back to reference Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall 10:789–798CrossRef Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall 10:789–798CrossRef
23.
go back to reference Kingery WD, Francois B (1965) Grain growth in porous compacts. J Am Ceram Soc 48:546–547CrossRef Kingery WD, Francois B (1965) Grain growth in porous compacts. J Am Ceram Soc 48:546–547CrossRef
24.
go back to reference Nichols FA (1966) Theory of grain growth in porous compacts. J Appl Phys 37:4599–4602CrossRef Nichols FA (1966) Theory of grain growth in porous compacts. J Appl Phys 37:4599–4602CrossRef
25.
go back to reference Nichols FA (1968) Further comments on the theory of grain growth in porous compacts. J Am Ceram Soc 51:468–469CrossRef Nichols FA (1968) Further comments on the theory of grain growth in porous compacts. J Am Ceram Soc 51:468–469CrossRef
26.
go back to reference Brook RJ (1969) Pore-grain boundary interactions and grain growth. J Am Ceram Soc 52:56–57CrossRef Brook RJ (1969) Pore-grain boundary interactions and grain growth. J Am Ceram Soc 52:56–57CrossRef
27.
go back to reference Brook RJ (1969) Pores and grain growth kinetics. J Am Ceram Soc 52:339–340CrossRef Brook RJ (1969) Pores and grain growth kinetics. J Am Ceram Soc 52:339–340CrossRef
28.
go back to reference Riedel H, Svoboda J (1993) A theoretical study of grain growth in porous solids during sintering. Acta Metall Mater 41:1929–1936CrossRef Riedel H, Svoboda J (1993) A theoretical study of grain growth in porous solids during sintering. Acta Metall Mater 41:1929–1936CrossRef
29.
go back to reference Readey DW (1966) Mass transport and sintering in impure ionic solids. J Am Ceram Soc 49:366–369CrossRef Readey DW (1966) Mass transport and sintering in impure ionic solids. J Am Ceram Soc 49:366–369CrossRef
30.
go back to reference Readey DW (1966) Chemical potentials and initial sintering in pure metals and ionic compounds. J Appl Phys 37:2309–2312CrossRef Readey DW (1966) Chemical potentials and initial sintering in pure metals and ionic compounds. J Appl Phys 37:2309–2312CrossRef
31.
go back to reference Gong MM, Chang CH, Wu LJ, Dey S, Castro RHR, Liu F (2017) Modeling the grain growth kinetics of doped nearly fully dense nanocrystalline ceramics. Ceram Int 43:6677–6683CrossRef Gong MM, Chang CH, Wu LJ, Dey S, Castro RHR, Liu F (2017) Modeling the grain growth kinetics of doped nearly fully dense nanocrystalline ceramics. Ceram Int 43:6677–6683CrossRef
32.
go back to reference Svoboda J, Riedel H (1992) Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering. Acta Metall Mater 40:2829–2840CrossRef Svoboda J, Riedel H (1992) Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering. Acta Metall Mater 40:2829–2840CrossRef
33.
go back to reference Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef
34.
go back to reference Svoboda J, Fischer FD, Gamsjäger E (2002) Influence of solute segregation and drag on properties of migrating interfaces. Acta Mater 50:967–977CrossRef Svoboda J, Fischer FD, Gamsjäger E (2002) Influence of solute segregation and drag on properties of migrating interfaces. Acta Mater 50:967–977CrossRef
35.
go back to reference Svoboda J, Fischer FD, Leindl M (2011) Transient solute drag in migrating grain boundaries. Acta Mater 59:6556–6562CrossRef Svoboda J, Fischer FD, Leindl M (2011) Transient solute drag in migrating grain boundaries. Acta Mater 59:6556–6562CrossRef
37.
go back to reference Svoboda J, Fischer FD, Fratzl P (2006) Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies. Acta Mater 54:3043–3053CrossRef Svoboda J, Fischer FD, Fratzl P (2006) Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies. Acta Mater 54:3043–3053CrossRef
38.
go back to reference Svoboda J, Fischer FD, Fratzl P, Kozeschnik E (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: theory. Mater Sci Eng A 385:166–174 Svoboda J, Fischer FD, Fratzl P, Kozeschnik E (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: theory. Mater Sci Eng A 385:166–174
39.
go back to reference Kozeschnik E, Svoboda J, Fratzl P, Fischer FD (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates II: numerical solution and application. Mater Sci Eng A 385:157–165 Kozeschnik E, Svoboda J, Fratzl P, Fischer FD (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates II: numerical solution and application. Mater Sci Eng A 385:157–165
40.
go back to reference Coble RL (1961) Sintering crystalline solids. I. Intermediate and final state diffusion models. J Appl Phys 32:787–792CrossRef Coble RL (1961) Sintering crystalline solids. I. Intermediate and final state diffusion models. J Appl Phys 32:787–792CrossRef
41.
go back to reference Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New York, pp 361–363CrossRef Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New York, pp 361–363CrossRef
42.
go back to reference Hillert M, Sundman B (1976) A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall 24:731–743CrossRef Hillert M, Sundman B (1976) A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall 24:731–743CrossRef
43.
go back to reference Blendell JE, Handwerker CA (1986) Effect of chemical composition on sintering of ceramics. J Cryst Growth 75:138–160CrossRef Blendell JE, Handwerker CA (1986) Effect of chemical composition on sintering of ceramics. J Cryst Growth 75:138–160CrossRef
44.
go back to reference Hwang SL, Chen IW (1990) Grain size control of tetragonal zirconia polycrystals using the space charge concept. J Am Ceram Soc 73:3269–3277CrossRef Hwang SL, Chen IW (1990) Grain size control of tetragonal zirconia polycrystals using the space charge concept. J Am Ceram Soc 73:3269–3277CrossRef
45.
go back to reference Johnson WC (1977) Grain boundary segregation in ceramics. Metall Trans A 8:1413–1422CrossRef Johnson WC (1977) Grain boundary segregation in ceramics. Metall Trans A 8:1413–1422CrossRef
46.
go back to reference Terwilliger CD, Chiang YM (1995) Size-dependent solute segregation and total solubility in ultrafine polycrystals: Ca in TiO2. Acta Metall Mater 43:319–328CrossRef Terwilliger CD, Chiang YM (1995) Size-dependent solute segregation and total solubility in ultrafine polycrystals: Ca in TiO2. Acta Metall Mater 43:319–328CrossRef
47.
go back to reference Tschöpe A (2005) Interface defect chemistry and effective conductivity in polycrystalline cerium oxide. J Electroceram 14:5–23CrossRef Tschöpe A (2005) Interface defect chemistry and effective conductivity in polycrystalline cerium oxide. J Electroceram 14:5–23CrossRef
48.
go back to reference Colbourn EA, MacKrodt WC, Tasker PW (1983) The segregation of calcium ions at the surface of magnesium oxide: theory and calculation. J Mater Sci 18:1917–1924. doi:10.1007/BF00554983 CrossRef Colbourn EA, MacKrodt WC, Tasker PW (1983) The segregation of calcium ions at the surface of magnesium oxide: theory and calculation. J Mater Sci 18:1917–1924. doi:10.​1007/​BF00554983 CrossRef
49.
go back to reference Mclean D (1957) Grain boundaries in metals. Oxford University Press, Oxford, pp 15–43 Mclean D (1957) Grain boundaries in metals. Oxford University Press, Oxford, pp 15–43
50.
go back to reference Lejček P, Hofmann S, Janovec J (2007) Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of α-iron and ferrite steels. Mater Sci Eng A 462:76–85CrossRef Lejček P, Hofmann S, Janovec J (2007) Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of α-iron and ferrite steels. Mater Sci Eng A 462:76–85CrossRef
51.
go back to reference Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238CrossRef Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238CrossRef
52.
go back to reference Kang SJL, Jung Y (2004) Sintering kinetics at final stage sintering: model calculation and map construction. Acta Mater 52:4573–4578CrossRef Kang SJL, Jung Y (2004) Sintering kinetics at final stage sintering: model calculation and map construction. Acta Mater 52:4573–4578CrossRef
53.
go back to reference Johnson DL (1970) a general model for the intermediate stage of sintering. J Am Ceram Soc 53:574–577CrossRef Johnson DL (1970) a general model for the intermediate stage of sintering. J Am Ceram Soc 53:574–577CrossRef
54.
go back to reference Hansen JD, Rusin RP, Teng MH, Johnson DL (1992) Combined-stage sintering model. J Am Ceram Soc 75:1129–1135CrossRef Hansen JD, Rusin RP, Teng MH, Johnson DL (1992) Combined-stage sintering model. J Am Ceram Soc 75:1129–1135CrossRef
55.
go back to reference KaKar AK (1968) Sintering kinetics based on geometric models. J Am Ceram Soc 51:236CrossRef KaKar AK (1968) Sintering kinetics based on geometric models. J Am Ceram Soc 51:236CrossRef
56.
go back to reference Gibbs JW (1928) The collected work of J. W. Gibbs. Longmans, Green & Co, New York, pp 55–56 Gibbs JW (1928) The collected work of J. W. Gibbs. Longmans, Green & Co, New York, pp 55–56
57.
go back to reference Weissmüller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRef Weissmüller J (1993) Alloy effects in nanostructures. Nanostruct Mater 3:261–272CrossRef
58.
go back to reference Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRef Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRef
59.
go back to reference Liu F, Kirchheim R (2004) Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth 264:385–391CrossRef Liu F, Kirchheim R (2004) Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth 264:385–391CrossRef
60.
go back to reference Krill CE, Ehrhardt H, Birringer R (2005) Thermodynamic stabilization of nanocrystallinity. Z Metallkunde 96:1134–1141CrossRef Krill CE, Ehrhardt H, Birringer R (2005) Thermodynamic stabilization of nanocrystallinity. Z Metallkunde 96:1134–1141CrossRef
61.
go back to reference Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112-1–094112-13CrossRef Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112-1–094112-13CrossRef
62.
go back to reference Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRef Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371CrossRef
63.
go back to reference Saber M, Kotan H, Koch CC, Scattergood RO (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515-1–063515-10CrossRef Saber M, Kotan H, Koch CC, Scattergood RO (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515-1–063515-10CrossRef
64.
go back to reference Wu LJ, Dey S, Gong MM, Liu F, Castro RHR (2014) Surface segregation on manganese doped ceria nanoparticles and relationship with nanostability. J Phys Chem C 118:30187–30196CrossRef Wu LJ, Dey S, Gong MM, Liu F, Castro RHR (2014) Surface segregation on manganese doped ceria nanoparticles and relationship with nanostability. J Phys Chem C 118:30187–30196CrossRef
65.
go back to reference Wynblatt P, Ku RC (1977) Surface energy and solute strain energy effects in surface segregation. Surf Sci 65:511–531CrossRef Wynblatt P, Ku RC (1977) Surface energy and solute strain energy effects in surface segregation. Surf Sci 65:511–531CrossRef
66.
go back to reference Wynblatt P, Chatain D (2006) Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans A 37:2595–2620CrossRef Wynblatt P, Chatain D (2006) Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans A 37:2595–2620CrossRef
67.
go back to reference Saber M, Kotan H, Koch CC, Scattergood RO (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114:103510CrossRef Saber M, Kotan H, Koch CC, Scattergood RO (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114:103510CrossRef
68.
go back to reference Chookajorn T, Schuh CA (2014) Thermodynamics of stable nanocrystalline alloys: a Monte Carlo analysis. Phys Rev B 89:064102-1–064102-10CrossRef Chookajorn T, Schuh CA (2014) Thermodynamics of stable nanocrystalline alloys: a Monte Carlo analysis. Phys Rev B 89:064102-1–064102-10CrossRef
69.
go back to reference Borisov VT, Golikov VM, Scherbedinskiy GV (1964) Relation between diffusion coefficients and grain boundary energy. Fiz Met Metalloved 17:881–885 Borisov VT, Golikov VM, Scherbedinskiy GV (1964) Relation between diffusion coefficients and grain boundary energy. Fiz Met Metalloved 17:881–885
70.
go back to reference Burke JE, Turnbull D (1952) Recrystallization and grain growth. Prog Met Phys 3:220–292CrossRef Burke JE, Turnbull D (1952) Recrystallization and grain growth. Prog Met Phys 3:220–292CrossRef
71.
go back to reference Bernardini J, Gas P, Hondros ED, Seah MP (1982) The role of solute segregation in grain boundary diffusion. Proc R Soc Lond A 379:159–178CrossRef Bernardini J, Gas P, Hondros ED, Seah MP (1982) The role of solute segregation in grain boundary diffusion. Proc R Soc Lond A 379:159–178CrossRef
72.
go back to reference Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New York, pp 413–421 Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New York, pp 413–421
Metadata
Title
Modeling the final sintering stage of doped ceramics: mutual interaction between grain growth and densification
Authors
M. M. Gong
R. H. R. Castro
F. Liu
Publication date
13-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 3/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1617-1

Other articles of this Issue 3/2018

Journal of Materials Science 3/2018 Go to the issue

Premium Partners