Skip to main content
Top
Published in: Adsorption 8/2019

12-07-2019

Monolithic microporous carbon adsorbent for low-temperature natural gas storage

Authors: A. V. Shkolin, A. A. Fomkin, I. E. Men’shchikov, E. M. Strizhenov, A. L. Pulin, E. V. Khozina

Published in: Adsorption | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study is aimed at the development of scientific and technological approaches to the production and exploitation of adsorption systems for natural gas storage at low temperatures. In this work, a monolithic microporous carbon adsorbent is proposed for the accumulation of natural gas; the comprehensive investigations of its structure and properties were carried out. The proposed adsorbent was used for filling up a mobile adsorption natural gas storage reservoir (an adsorber) equipped with the internal and external heat exchangers which provided different modes of fueling/delivery process. The adsorber endured the integrated reliability testing under isothermal, adiabatic and low-temperature conditions of gas fueling/delivery modes. The adsorption characteristics were determined at the pressures up to 10 MPa and within the temperature range from 238 to 293 K; the energy consumptions upon the processes of gas fueling and adsorber cooling were accessed depending on the fueling mode; the temperature variations occurring in the adsorber upon the gas fueling/delivery processes were studied within the pressure range from 0.05 to 10 MPa. Cyclic testings of the mobile adsorber of natural gas were performed to determine an influence of the cyclic loading on the adsorption capacity of the adsorbent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
According to NIST, the normal conditions for gas volume determination (NTP) are T=293.15 K, P=101,325 Pa.
 
Literature
go back to reference Agarwal, R.K., Schwarz, J.A.: Analysis of high-pressure adsorption of gases on activated carbon by potential-theory. Carbon 26, 873–887 (1988)CrossRef Agarwal, R.K., Schwarz, J.A.: Analysis of high-pressure adsorption of gases on activated carbon by potential-theory. Carbon 26, 873–887 (1988)CrossRef
go back to reference Arnold, L., Averlant, G., Marx, S., Weickert, M.: Metal-organic frameworks for natural gas storage in vehicles. Chem.Ing. Technik. 85, 1726–1733 (2013)CrossRef Arnold, L., Averlant, G., Marx, S., Weickert, M.: Metal-organic frameworks for natural gas storage in vehicles. Chem.Ing. Technik. 85, 1726–1733 (2013)CrossRef
go back to reference Bastos-Neto, M., Canabrava, D.V., Torres, A.E.B., Rodriguez-Castellón, E., Jiménez-López, A., Azevedo, D.C.S., Cavalcante Jr., C.L.: Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl. Surf. Sci. 253, 5721–5725 (2007). https://doi.org/10.1016/j.apsusc.2006.12.056 CrossRef Bastos-Neto, M., Canabrava, D.V., Torres, A.E.B., Rodriguez-Castellón, E., Jiménez-López, A., Azevedo, D.C.S., Cavalcante Jr., C.L.: Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl. Surf. Sci. 253, 5721–5725 (2007). https://​doi.​org/​10.​1016/​j.​apsusc.​2006.​12.​056 CrossRef
go back to reference Brunauer, S.: The adsorption of gases and vapors, vol. I. Oxford University Press, Oxford (1943) Brunauer, S.: The adsorption of gases and vapors, vol. I. Oxford University Press, Oxford (1943)
go back to reference Bilóe, S., Goetz, V., Mauran, S.: Dynamic discharge and performance of a new adsorbent for natural gas storage. AIChE J. 47(12), 2819–2830 (2001)CrossRef Bilóe, S., Goetz, V., Mauran, S.: Dynamic discharge and performance of a new adsorbent for natural gas storage. AIChE J. 47(12), 2819–2830 (2001)CrossRef
go back to reference Bilóe, S., Goetz, V., Guillot, A.: Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon 40(8), 1295–1308 (2002)CrossRef Bilóe, S., Goetz, V., Guillot, A.: Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon 40(8), 1295–1308 (2002)CrossRef
go back to reference Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. In: Cadenhead, D.D. (ed.) Progress in Surface and Membrane Science, pp. 1–69. Academic Press, London (1975) Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. In: Cadenhead, D.D. (ed.) Progress in Surface and Membrane Science, pp. 1–69. Academic Press, London (1975)
go back to reference Fomkin, A.A., Shkolin, A.V., Menshchikov, I.E., Tsivadze, A.Y.: Storage method of natural gas by adsorption in industrial gas cylinders. Patent RU 2616140. Effective date for property rights: 24.12.2015. Date of publication: 12.04.2017 Bull. No 11 Fomkin, A.A., Shkolin, A.V., Menshchikov, I.E., Tsivadze, A.Y.: Storage method of natural gas by adsorption in industrial gas cylinders. Patent RU 2616140. Effective date for property rights: 24.12.2015. Date of publication: 12.04.2017 Bull. No 11
go back to reference Fomkin, A.A., Shkolin, A.V., Menshchikov, I.E., Tsivadze, A.Y.: Method of storing the natural gas in the adsorbed form at the reduced temperatures. RU patent 2650012 Effective date for property rights: 27.12.2016. Date of publication: 06.04.2018 Bull. No 10 Fomkin, A.A., Shkolin, A.V., Menshchikov, I.E., Tsivadze, A.Y.: Method of storing the natural gas in the adsorbed form at the reduced temperatures. RU patent 2650012 Effective date for property rights: 27.12.2016. Date of publication: 06.04.2018 Bull. No 10
go back to reference Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press Inc., San Diego (1982) Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press Inc., San Diego (1982)
go back to reference Mennon, V.C., Komarneni, S.: Porous adsorbents for vehicular natural gas storage: a review. J. Porous Mater. 5, 43–58 (1998)CrossRef Mennon, V.C., Komarneni, S.: Porous adsorbents for vehicular natural gas storage: a review. J. Porous Mater. 5, 43–58 (1998)CrossRef
go back to reference Men´shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Yakovlev, VYu., Khozina, E.V.: Optimization of structural and energy characteristics of adsorbents for methane storage. Russ. Chem. Bull. 67, 1814–1822 (2018)CrossRef Men´shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Yakovlev, VYu., Khozina, E.V.: Optimization of structural and energy characteristics of adsorbents for methane storage. Russ. Chem. Bull. 67, 1814–1822 (2018)CrossRef
go back to reference Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Quinn, D.F.: Micropore size distributions of activated carbons and carbon molecular sieves assessed by high-pressure methane and carbon dioxide adsorption isotherms. J. Phys. Chem. B 106, 9372–9379 (2002a)CrossRef Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Quinn, D.F.: Micropore size distributions of activated carbons and carbon molecular sieves assessed by high-pressure methane and carbon dioxide adsorption isotherms. J. Phys. Chem. B 106, 9372–9379 (2002a)CrossRef
go back to reference Mason, J.A., Oktawiec, J., Taylor, M.K., Hudson, M.R., Rodriguez, J., Bachman, J.E., Gonzalez, M.I., Cervellino, A., Guagliardi, A., Brown, C.M., Llewellyn, P.L., Masciocchi, N., Long, J.R.: Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–371 (2015). https://doi.org/10.1038/nature15732 CrossRefPubMed Mason, J.A., Oktawiec, J., Taylor, M.K., Hudson, M.R., Rodriguez, J., Bachman, J.E., Gonzalez, M.I., Cervellino, A., Guagliardi, A., Brown, C.M., Llewellyn, P.L., Masciocchi, N., Long, J.R.: Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–371 (2015). https://​doi.​org/​10.​1038/​nature15732 CrossRefPubMed
go back to reference Menshchikov, I.E., Fomkin, A.A., Tsivadze, A.Y., Shkolin, A.V., Strizhenov, E.M., Khozina, E.V.: Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin. Adsorption 23, 327–339 (2017)CrossRef Menshchikov, I.E., Fomkin, A.A., Tsivadze, A.Y., Shkolin, A.V., Strizhenov, E.M., Khozina, E.V.: Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin. Adsorption 23, 327–339 (2017)CrossRef
go back to reference Mota, J.P.B., Saatdjian, E., Tondeur, D., Rodrigues, A.E.: A simulation model of a high-capacity methane adsorptive storage system. Adsorption 1(1), 17–27 (1995)CrossRef Mota, J.P.B., Saatdjian, E., Tondeur, D., Rodrigues, A.E.: A simulation model of a high-capacity methane adsorptive storage system. Adsorption 1(1), 17–27 (1995)CrossRef
go back to reference Mota, J., Rodrigues, A., Saatdjian, E., Tondeur, D.: Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon 35(9), 1259–1270 (1997)CrossRef Mota, J., Rodrigues, A., Saatdjian, E., Tondeur, D.: Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon 35(9), 1259–1270 (1997)CrossRef
go back to reference Mota, J.: Impact of gas composition on natural gas storage by adsorption. AIChE J. 45(1), 986–996 (1999)CrossRef Mota, J.: Impact of gas composition on natural gas storage by adsorption. AIChE J. 45(1), 986–996 (1999)CrossRef
go back to reference Patil, K.H., Sahoo, S.: Charge characteristics of adsorbed natural gas storage system based on MAXSORB III. J. Nat. Gas Sci. Eng. 52, 267–282 (2018)CrossRef Patil, K.H., Sahoo, S.: Charge characteristics of adsorbed natural gas storage system based on MAXSORB III. J. Nat. Gas Sci. Eng. 52, 267–282 (2018)CrossRef
go back to reference Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000)CrossRef Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000)CrossRef
go back to reference Shkolin, A.V., Tsivadze, A.Y., Anuchin, K.M., Men’shchikov, I.E., Pulin, A.L.: Experimental study and numerical modeling: methane adsorption in microporous carbon adsorbent over the subcritical and supercritical temperature regions. Prot. Met. Phys. Chem. Surf. 52(6), 955–963 (2016). https://doi.org/10.1134/S2070205116060186 CrossRef Shkolin, A.V., Tsivadze, A.Y., Anuchin, K.M., Men’shchikov, I.E., Pulin, A.L.: Experimental study and numerical modeling: methane adsorption in microporous carbon adsorbent over the subcritical and supercritical temperature regions. Prot. Met. Phys. Chem. Surf. 52(6), 955–963 (2016). https://​doi.​org/​10.​1134/​S207020511606018​6 CrossRef
go back to reference Simon, C.M., Kim, J., Gomez-Gualdron, D.A., Camp, J.S., Chung, Y.G., Martin, R.L., Mercado, R., Deem, M.W., Gunter, D., Haranczyk, M., Sholl, D.S., Snurr, R.Q., Smit, B.: The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015). https://doi.org/10.1039/c4ee03515a CrossRef Simon, C.M., Kim, J., Gomez-Gualdron, D.A., Camp, J.S., Chung, Y.G., Martin, R.L., Mercado, R., Deem, M.W., Gunter, D., Haranczyk, M., Sholl, D.S., Snurr, R.Q., Smit, B.: The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015). https://​doi.​org/​10.​1039/​c4ee03515a CrossRef
go back to reference Solar, C., Blanco, A.G., Vallone, A., Sapag, K.: Adsorption of methane in porous materials as the basis for the storage of natural gas. Nat. Gas 10, 205–244 (2010) Solar, C., Blanco, A.G., Vallone, A., Sapag, K.: Adsorption of methane in porous materials as the basis for the storage of natural gas. Nat. Gas 10, 205–244 (2010)
go back to reference Tabor, D.: The hardness of metals. Oxford University Press Inc., New York (1951) Tabor, D.: The hardness of metals. Oxford University Press Inc., New York (1951)
go back to reference Talu, O: An overview of adsorptive storage of natural gas. In Suzuki, M. (ed) Proceedings International Conference on Fundamentals of Adsorption, Kyoto, pp. 655-662 (1992) Talu, O: An overview of adsorptive storage of natural gas. In Suzuki, M. (ed) Proceedings International Conference on Fundamentals of Adsorption, Kyoto, pp. 655-662 (1992)
go back to reference Wegrzyn, J., Gurevich, M.: Adsorbent storage of natural gas. Appl. Energy 55(2), 71–83 (1996)CrossRef Wegrzyn, J., Gurevich, M.: Adsorbent storage of natural gas. Appl. Energy 55(2), 71–83 (1996)CrossRef
go back to reference Zhang, H., Deria, P., Farha, O.K., Hupp, J.T., Snurr, R.Q.: A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks. Energy Environ. Sci. 8, 1501–1510 (2015)CrossRef Zhang, H., Deria, P., Farha, O.K., Hupp, J.T., Snurr, R.Q.: A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks. Energy Environ. Sci. 8, 1501–1510 (2015)CrossRef
Metadata
Title
Monolithic microporous carbon adsorbent for low-temperature natural gas storage
Authors
A. V. Shkolin
A. A. Fomkin
I. E. Men’shchikov
E. M. Strizhenov
A. L. Pulin
E. V. Khozina
Publication date
12-07-2019
Publisher
Springer US
Published in
Adsorption / Issue 8/2019
Print ISSN: 0929-5607
Electronic ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-019-00135-0

Other articles of this Issue 8/2019

Adsorption 8/2019 Go to the issue

Premium Partners