Skip to main content
Top
Published in: Metal Science and Heat Treatment 1-2/2016

10-05-2016

Morphological Characteristics of Chromium Carbides in HP40NbTi Refractory Alloys in Cast Condition and after High-Temperature Holds

Authors: S. Yu. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, A. V. Ptashnik, E. V. Svyatysheva

Published in: Metal Science and Heat Treatment | Issue 1-2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning electron microscopy, different methods of electron diffraction, x-ray spectrum microanalysis and x-ray diffraction analysis are used to study the microstructure and crystallography of eutectic chromium carbides in HP40NbTi alloys in as-cast condition and after endurance tests for 2 – 100 h at 1150°C. The morphology and the transformations of the carbides after the high-temperature endurance tests are investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes, history of evolution,” Arch. Foundry Eng., 11(2), 47 – 52 (2001). M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes, history of evolution,” Arch. Foundry Eng., 11(2), 47 – 52 (2001).
2.
go back to reference J. C. M. Farrar, “Group H heat-resistant stainless steels,” in: Guide to Low-Alloy Steels, Stainless Steels and Nickel-Base Alloys, CRS Press, Cambridge Eng., Woodhead Publ. Ltd, Boca Raton (2004), pp. 117 – 143 (DOI 10.1533/9781855739925). J. C. M. Farrar, “Group H heat-resistant stainless steels,” in: Guide to Low-Alloy Steels, Stainless Steels and Nickel-Base Alloys, CRS Press, Cambridge Eng., Woodhead Publ. Ltd, Boca Raton (2004), pp. 117 – 143 (DOI 10.​1533/​9781855739925).
3.
go back to reference M. Blair, “Stainless steels: cast” in: K. H. J. Buschow, R. W. Cahn, M. C. Flemings (eds.), Encyclopedia of Materials: Science and Technology, Oxford (2001), pp. 8798 – 8802 (DOI 10.1016/B0-08-043152-6/01580-1). M. Blair, “Stainless steels: cast” in: K. H. J. Buschow, R. W. Cahn, M. C. Flemings (eds.), Encyclopedia of Materials: Science and Technology, Oxford (2001), pp. 8798 – 8802 (DOI 10.​1016/​B0-08-043152-6/​01580-1).
4.
go back to reference L. Bonaccorsi, E. Guglielmino, R. Pino, et al., “Damage analysis in Fe – Cr – Ni centrifugally cast alloy tubes for reforming furnaces,” Eng. Failure Anal., 36, 65 – 74 (2014).CrossRef L. Bonaccorsi, E. Guglielmino, R. Pino, et al., “Damage analysis in Fe – Cr – Ni centrifugally cast alloy tubes for reforming furnaces,” Eng. Failure Anal., 36, 65 – 74 (2014).CrossRef
5.
go back to reference H. M. Tawancy, A. Ul-Hamid, A. I. Mohammed, and N. M. Abbas, “Effect of materials selection and design on the performance of an engineering product — an example from petrochemical industry,” Mater. Design, 28(2), 686 – 703 (2007) (DOI 10.1016/j.matdes.2005.07.003). H. M. Tawancy, A. Ul-Hamid, A. I. Mohammed, and N. M. Abbas, “Effect of materials selection and design on the performance of an engineering product — an example from petrochemical industry,” Mater. Design, 28(2), 686 – 703 (2007) (DOI 10.​1016/​j.​matdes.​2005.​07.​003).
6.
go back to reference L. H. De Almeida, A. F. Ribeiro, and I. L. May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2003).CrossRef L. H. De Almeida, A. F. Ribeiro, and I. L. May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2003).CrossRef
7.
go back to reference E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after longterm aging,” Scr. Mater., 49(2), 117 – 122 (2003).CrossRef E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after longterm aging,” Scr. Mater., 49(2), 117 – 122 (2003).CrossRef
8.
go back to reference G. F. Vander Voort, G. M. Lucas, and E. P. Manilova, “Metallography and microstructures of heat-resistant alloys,” in: G. F. Vander Voort (ed.), ASM Handbook, Vol. 9, Metallography and Microstructures, ASM Int., Materials Park, Ohio (2004), pp. 820 – 859. G. F. Vander Voort, G. M. Lucas, and E. P. Manilova, “Metallography and microstructures of heat-resistant alloys,” in: G. F. Vander Voort (ed.), ASM Handbook, Vol. 9, Metallography and Microstructures, ASM Int., Materials Park, Ohio (2004), pp. 820 – 859.
9.
go back to reference A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 1,” Metalloved. Term. Obrab. Met., No. 1(703), 3 – 8 (2014). A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 1,” Metalloved. Term. Obrab. Met., No. 1(703), 3 – 8 (2014).
10.
go back to reference A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Metalloved. Term. Obrab. Met., No. 3 (705), 12 – 19 (2014). A. I. Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Metalloved. Term. Obrab. Met., No. 3 (705), 12 – 19 (2014).
11.
go back to reference A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Metalloved. Term. Obrab. Met., No. 4(694), 42 – 47 (2013). A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Metalloved. Term. Obrab. Met., No. 4(694), 42 – 47 (2013).
12.
go back to reference A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Special features of structural changes in refractory alloy 45Kh26N33S2B2 at operating temperatures. Report 1. Cast condition,” Nauch.-Tekh. Vedom. SPbGPU, No. 142, 155 – 163 (2012). A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi, et al., “Special features of structural changes in refractory alloy 45Kh26N33S2B2 at operating temperatures. Report 1. Cast condition,” Nauch.-Tekh. Vedom. SPbGPU, No. 142, 155 – 163 (2012).
13.
go back to reference A. A. Kaya, P. Krauklis, and D. J. Yuong, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Charact., 49(1), 11 – 21 (2002).CrossRef A. A. Kaya, P. Krauklis, and D. J. Yuong, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Charact., 49(1), 11 – 21 (2002).CrossRef
14.
go back to reference A. A. Kaya, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations,” Mater. Charact., 49(1), 23 – 34 (2002).CrossRef A. A. Kaya, “Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations,” Mater. Charact., 49(1), 23 – 34 (2002).CrossRef
15.
go back to reference I. A. Sustaita-Torres, S. Haro-Rodrigues, M. P. Guerrero-Mata, et al., “Aging of cast 35Cr – 45Ni heat resistant alloy,” Mater. Chem. Phys., 133, 1018 – 1023 (2012).CrossRef I. A. Sustaita-Torres, S. Haro-Rodrigues, M. P. Guerrero-Mata, et al., “Aging of cast 35Cr – 45Ni heat resistant alloy,” Mater. Chem. Phys., 133, 1018 – 1023 (2012).CrossRef
16.
go back to reference L. S. Monobe and C. G. Schõn, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the ‘as cast’ and aged states,” J. Mater. Res. Technol., 2(2), 195 – 201 (2013).CrossRef L. S. Monobe and C. G. Schõn, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the ‘as cast’ and aged states,” J. Mater. Res. Technol., 2(2), 195 – 201 (2013).CrossRef
17.
go back to reference S. Borjali, S. R. Allahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high-pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Design, 34, 65 – 73 (2012).CrossRef S. Borjali, S. R. Allahkaram, and H. Khosravi, “Effects of working temperature and carbon diffusion on the microstructure of high-pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition,” Mater. Design, 34, 65 – 73 (2012).CrossRef
18.
go back to reference W. Z. Wang, F. Z. Xuan, Z. D. Wang, and C. J. Liu, “Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy,” Mater. Design, 32, 4010 – 4016 (2011).CrossRef W. Z. Wang, F. Z. Xuan, Z. D. Wang, and C. J. Liu, “Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy,” Mater. Design, 32, 4010 – 4016 (2011).CrossRef
19.
go back to reference A. I Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb under a long high-temperature hold,” Metalloved. Term. Obrab. Met., No. 10(700), 7 – 14 (2013). A. I Rudskoy, S. Yu. Kondrat’ev, G. P. Anastasiadi et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb under a long high-temperature hold,” Metalloved. Term. Obrab. Met., No. 10(700), 7 – 14 (2013).
20.
go back to reference A. I. Rudskoy, G. P. Anastasiadi, S. Yu. Kondrat’ev et al., “Effect of the factor of the number of electron vacancies on the kinetics of formation, growth, and dissolution of phases under long high-temperature holds of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb,” Fiz. Met. Metalloved., 115(1), 3 – 13 (2014). A. I. Rudskoy, G. P. Anastasiadi, S. Yu. Kondrat’ev et al., “Effect of the factor of the number of electron vacancies on the kinetics of formation, growth, and dissolution of phases under long high-temperature holds of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb,” Fiz. Met. Metalloved., 115(1), 3 – 13 (2014).
21.
go back to reference A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi et al., “Special features of structural changes in refractory alloy 45Kh25N33S2B2 under operating temperatures. Report 2: Effect of high-temperature holding,” Nauch.-Tekh. Vedom. SPbGPU, No. 147-1, 217 – 228 (2012). A. S. Oryshchenko, S. Yu. Kondrat’ev, G. P. Anastasiadi et al., “Special features of structural changes in refractory alloy 45Kh25N33S2B2 under operating temperatures. Report 2: Effect of high-temperature holding,” Nauch.-Tekh. Vedom. SPbGPU, No. 147-1, 217 – 228 (2012).
22.
go back to reference A. I. Rudskoy, G. I. Anastasiadi, A. S. Oryshchenko et al., “Special features of structural changes in refractory alloy 45Kh25N33S2B2 under operating temperatures. Report 3: Mechanism and kinetics of phase transformations,” Nauch.-Tekh. Vedom. SPbGPU, No. 154-2, 143 – 150 (2012). A. I. Rudskoy, G. I. Anastasiadi, A. S. Oryshchenko et al., “Special features of structural changes in refractory alloy 45Kh25N33S2B2 under operating temperatures. Report 3: Mechanism and kinetics of phase transformations,” Nauch.-Tekh. Vedom. SPbGPU, No. 154-2, 143 – 150 (2012).
23.
go back to reference K. G. Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A, 43A(6), 1760 – 1769 (2012) (DOI 10.1007/s11661-011-1025-0). K. G. Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A, 43A(6), 1760 – 1769 (2012) (DOI 10.​1007/​s11661-011-1025-0).
24.
go back to reference K. G. Buchanan, M. V. Kral, and C. M. Bishop, “Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys,” Metall. Mater. Trans. A, 45A(8), 3373 – 3385 (2014) (DOI 10.1007/s11661-014-2285-2). K. G. Buchanan, M. V. Kral, and C. M. Bishop, “Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys,” Metall. Mater. Trans. A, 45A(8), 3373 – 3385 (2014) (DOI 10.​1007/​s11661-014-2285-2).
25.
go back to reference F. C. Nunes, L. H. De Almeida, J. Dille et al., “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steel,” Mater. Charact., 58, 132 – 142 (2007).CrossRef F. C. Nunes, L. H. De Almeida, J. Dille et al., “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steel,” Mater. Charact., 58, 132 – 142 (2007).CrossRef
26.
go back to reference B. Piekarski, “Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni – Cr cast austenitic steels,” Mater. Charact., 47, 181 – 186 (2001).CrossRef B. Piekarski, “Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni – Cr cast austenitic steels,” Mater. Charact., 47, 181 – 186 (2001).CrossRef
27.
go back to reference Kaoru Yamamoto, Mitsuo Hashimoto, Nobuya Sasaguri, and Yasuhiro Matsubara, “Solidification of high chromium cast iron substituted by 25 to 70 mass. % Ni for Fe,” Mater. Trans. (Jpn. Foundry Eng. Soc.), 50(9), 2253 – 2258 (2009). Kaoru Yamamoto, Mitsuo Hashimoto, Nobuya Sasaguri, and Yasuhiro Matsubara, “Solidification of high chromium cast iron substituted by 25 to 70 mass. % Ni for Fe,” Mater. Trans. (Jpn. Foundry Eng. Soc.), 50(9), 2253 – 2258 (2009).
28.
go back to reference Yu. N. Taran, “Structure of carbon-iron alloys,” in: M. L. Bernshtein and A. G. Rakhshtadt (eds.), Metal Science and Heat Treatment of Steel [in Russian], Metallurgiya, Moscow (1995), Vol. 2, Book 1, pp. 76 – 109. Yu. N. Taran, “Structure of carbon-iron alloys,” in: M. L. Bernshtein and A. G. Rakhshtadt (eds.), Metal Science and Heat Treatment of Steel [in Russian], Metallurgiya, Moscow (1995), Vol. 2, Book 1, pp. 76 – 109.
29.
go back to reference Tien-Fu Chen, Gyanendra Prasad Tiwari, Yoshiaki Iijima, and Kiyoshi Yamauchi, “Volume and grain boundary diffusion of chromium in Ni-base Ni – Cr – Fe alloys,” Mater. Trans. (Jpn. Foundry Eng. Soc.), 44(1), 40 – 46 (2003). Tien-Fu Chen, Gyanendra Prasad Tiwari, Yoshiaki Iijima, and Kiyoshi Yamauchi, “Volume and grain boundary diffusion of chromium in Ni-base Ni – Cr – Fe alloys,” Mater. Trans. (Jpn. Foundry Eng. Soc.), 44(1), 40 – 46 (2003).
30.
go back to reference A. C. S. Sabioni, A. M. Huntz, F. Silva, and F. Jomard, “Diffusion of iron in Cr2O3: polycrystals and thin films,” Mater. Sci. Eng. A, 392(1 – 2), 254 – 261 (2005). A. C. S. Sabioni, A. M. Huntz, F. Silva, and F. Jomard, “Diffusion of iron in Cr2O3: polycrystals and thin films,” Mater. Sci. Eng. A, 392(1 – 2), 254 – 261 (2005).
31.
go back to reference O. A. Bannykh and M. E. Drits (eds.), Phase Diagrams of Binary and Multicomponent Systems Based on Iron [in Russian], Metallurgiya, Moscow (1986), 440 p. O. A. Bannykh and M. E. Drits (eds.), Phase Diagrams of Binary and Multicomponent Systems Based on Iron [in Russian], Metallurgiya, Moscow (1986), 440 p.
32.
go back to reference T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol., 17(1), 1 – 14 (2001).CrossRef T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol., 17(1), 1 – 14 (2001).CrossRef
Metadata
Title
Morphological Characteristics of Chromium Carbides in HP40NbTi Refractory Alloys in Cast Condition and after High-Temperature Holds
Authors
S. Yu. Kondrat’ev
G. P. Anastasiadi
S. N. Petrov
A. V. Ptashnik
E. V. Svyatysheva
Publication date
10-05-2016
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 1-2/2016
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-016-9958-y

Other articles of this Issue 1-2/2016

Metal Science and Heat Treatment 1-2/2016 Go to the issue

65 YEARS OF THE DEPARTMENT OF METAL SCIENCE, HEAT AND LASER TREATMENT OF METALS OF THE PERM NATIONAL RESEARCH POLYTECHNIC UNIVERSITY

Formation of Structure of Lower Carbide-Free Bainite Due to Isothermal Treatment of Steels of Types Kh3G3MFS and KhN3MFS

Premium Partners