Skip to main content
Top
Published in: Metal Science and Heat Treatment 1-2/2016

10-05-2016

New Approach to Synthesis of Powder and Composite Materials by Electron Beam. Part 1. Technological Features of the Process

Authors: A. I. Rudskoy, S. Yu. Kondrat’ev, Yu. A. Sokolov

Published in: Metal Science and Heat Treatment | Issue 1-2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Possibilities of electron beam synthesis of structural and tool composite materials are considered. It is shown that a novel process involving mathematical modeling of each individual operation makes it possible to create materials with programmable structure and predictable properties from granules of various specified chemical compositions and sizes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 1. Production of Metallic Powders [in Russian], Izd. MISiS, Moscow (2001), 368 p. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 1. Production of Metallic Powders [in Russian], Izd. MISiS, Moscow (2001), 368 p.
2.
go back to reference G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 2. Forming and Sintering [in Russian], Izd. MISiS, Moscow (2002), 320 p. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes of Powder Metallurgy, Vol. 2. Forming and Sintering [in Russian], Izd. MISiS, Moscow (2002), 320 p.
3.
go back to reference Randall M. German, A – Z of Powder Metallurgy [Russian translation], Izd. Dom “Intellekt,” Moscow (2009), 336 p. Randall M. German, A – Z of Powder Metallurgy [Russian translation], Izd. Dom “Intellekt,” Moscow (2009), 336 p.
4.
go back to reference S. S. Kiparisov, Powder Metallurgy [in Russian], Metallurgiya, Moscow (1980), 496 p. S. S. Kiparisov, Powder Metallurgy [in Russian], Metallurgiya, Moscow (1980), 496 p.
5.
go back to reference M. I. Alymov, Powder Metallurgy of Nanocrystalline Materials [in Russia], Nauka, Moscow (2007), 169 p. M. I. Alymov, Powder Metallurgy of Nanocrystalline Materials [in Russia], Nauka, Moscow (2007), 169 p.
6.
go back to reference I. D. Radomysel’skii, “Metal ceramic structures and parts,” in: I. M. Fedorchenko (ed.), Recent Problems of Powder Metallurgy [in Russian], Naukova Dumka, Kiev (1970), 343 p. I. D. Radomysel’skii, “Metal ceramic structures and parts,” in: I. M. Fedorchenko (ed.), Recent Problems of Powder Metallurgy [in Russian], Naukova Dumka, Kiev (1970), 343 p.
7.
go back to reference V. N. Kokorin, A. I. Rudskoy, S. Yu. Kondrat’ev, et al., Theory and Practice of Pressing of Heterophase Moistened Mechanical Mixtures Based on Iron [in Russian], Izd. UlGTU, Ul’yanovsk (2012), 236 p. V. N. Kokorin, A. I. Rudskoy, S. Yu. Kondrat’ev, et al., Theory and Practice of Pressing of Heterophase Moistened Mechanical Mixtures Based on Iron [in Russian], Izd. UlGTU, Ul’yanovsk (2012), 236 p.
8.
go back to reference A. I. Rudskoy, S. Yu. Kondrat’ev, and V. N. Kokorin, “Pressing of heterophase moistened powder metallic mixtures for raising the quality of high-density preforms using intense compaction,” Sprav. Inzh. Zhurn. s Prilozh., No. 6, 12 – 16 (2011). A. I. Rudskoy, S. Yu. Kondrat’ev, and V. N. Kokorin, “Pressing of heterophase moistened powder metallic mixtures for raising the quality of high-density preforms using intense compaction,” Sprav. Inzh. Zhurn. s Prilozh., No. 6, 12 – 16 (2011).
9.
go back to reference A. I. Rudskoy, V. N. Kokorin, S. Yu. Kondrat’ev, et al., “Pressing of heterophase moistened iron powders using the method of intense compaction,” Naukoemk. Tekhnol. Mashinostr., No. 5(23), 13 – 20 (2013). A. I. Rudskoy, V. N. Kokorin, S. Yu. Kondrat’ev, et al., “Pressing of heterophase moistened iron powders using the method of intense compaction,” Naukoemk. Tekhnol. Mashinostr., No. 5(23), 13 – 20 (2013).
10.
go back to reference A. I. Rudskoy, S. Yu. Kondrat’ev, V. N. Kokorin, and N. A. Sizov, “Astudy of the process of compaction under ultrasonic impact on a moistened powder medium,” Nauch.-Tekh. Vedom. SPbGPU, No. 178, 148 – 155 (2013). A. I. Rudskoy, S. Yu. Kondrat’ev, V. N. Kokorin, and N. A. Sizov, “Astudy of the process of compaction under ultrasonic impact on a moistened powder medium,” Nauch.-Tekh. Vedom. SPbGPU, No. 178, 148 – 155 (2013).
11.
go back to reference V. E. Perel’man, Forming of Powder Materials [in Russian], Metallurgiya, Moscow (1978), 232 p. V. E. Perel’man, Forming of Powder Materials [in Russian], Metallurgiya, Moscow (1978), 232 p.
12.
go back to reference S. Y. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of surface-hardened layer in laser quenching of components,” Welding Int., 26(8), 629 – 632 (2012).CrossRef S. Y. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of surface-hardened layer in laser quenching of components,” Welding Int., 26(8), 629 – 632 (2012).CrossRef
13.
go back to reference S. Yu. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of surface-hardened layer in laser quenching of parts,” Svaroch. Proizvod., No. 3, 11 – 15 (2011). S. Yu. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of surface-hardened layer in laser quenching of parts,” Svaroch. Proizvod., No. 3, 11 – 15 (2011).
14.
go back to reference J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti – 6Al – 4V powder fractions,” J. Mater. Proc. Technol., 213, 2109 – 2118 (2013).CrossRef J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti – 6Al – 4V powder fractions,” J. Mater. Proc. Technol., 213, 2109 – 2118 (2013).CrossRef
15.
go back to reference X. Y. Cheng, S. J. Li, L. E. Murr, et al., “Compression deformation behavior of Ti – 6Al – 4V alloy with cellular structures fabricated by electron beam melting,” J. Mechan. Behavior Biomed. Mater., 16, 153 – 162 (2012).CrossRef X. Y. Cheng, S. J. Li, L. E. Murr, et al., “Compression deformation behavior of Ti – 6Al – 4V alloy with cellular structures fabricated by electron beam melting,” J. Mechan. Behavior Biomed. Mater., 16, 153 – 162 (2012).CrossRef
16.
go back to reference N. Hrabe and T. Quinn, “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti – 6Al – 4V) fabricated using electron beam melting (EBM), Part 1: Distance from build plate and part size,” Mater. Sci. Eng. A, 573, 264 – 270 (2013).CrossRef N. Hrabe and T. Quinn, “Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti – 6Al – 4V) fabricated using electron beam melting (EBM), Part 1: Distance from build plate and part size,” Mater. Sci. Eng. A, 573, 264 – 270 (2013).CrossRef
17.
go back to reference L. E. Murr, S.M. Gaytan, A. Cevlan, et al., “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting,” Acta Mater., 58, 1887 – 1894 (2010).CrossRef L. E. Murr, S.M. Gaytan, A. Cevlan, et al., “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting,” Acta Mater., 58, 1887 – 1894 (2010).CrossRef
18.
go back to reference S. Biamino, A. U. Penna, U. Ackelid, et al., “Electron beam melting of Ti48Al12Cr2Nb alloy: Microstructure and mechanical properties investigation,” Intermetallics, 19, 776 – 781 (2011).CrossRef S. Biamino, A. U. Penna, U. Ackelid, et al., “Electron beam melting of Ti48Al12Cr2Nb alloy: Microstructure and mechanical properties investigation,” Intermetallics, 19, 776 – 781 (2011).CrossRef
19.
go back to reference Yu. P. Moskvichev, V. I. Panin, S. V. Ageev, et al., “Granule composites and efficiency of their application,” Actual Conf., No. 1, 46 – 50 (2011). Yu. P. Moskvichev, V. I. Panin, S. V. Ageev, et al., “Granule composites and efficiency of their application,” Actual Conf., No. 1, 46 – 50 (2011).
20.
go back to reference A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Process of layer-after-layer electron beam synthesis of powder articles in vacuum,” Zagotov. Proizvod. Mashinostr., No. 8, 40 – 45 (2014). A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Process of layer-after-layer electron beam synthesis of powder articles in vacuum,” Zagotov. Proizvod. Mashinostr., No. 8, 40 – 45 (2014).
21.
go back to reference I. V. Zuev, Treatment of Materials by Lumped Energy Fluxes [in Russian], Izd. MEI, Moscow (1998), 162 p. I. V. Zuev, Treatment of Materials by Lumped Energy Fluxes [in Russian], Izd. MEI, Moscow (1998), 162 p.
22.
go back to reference N. I. Grechanyk, P. P. Kucherenko, and I. N. Grechanyk, “New electron beam equipment and technologies of producing advanced materials and coatings,” Paton Welding J., May, 25 – 29 (2007). N. I. Grechanyk, P. P. Kucherenko, and I. N. Grechanyk, “New electron beam equipment and technologies of producing advanced materials and coatings,” Paton Welding J., May, 25 – 29 (2007).
23.
go back to reference A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Determination of the thermophysical properties of materials for simulating the process of fabrication of metallic granules,” Nauch.-Tekh. Vedom. SPbGPU, No. 3(202), 170 – 179 (2014). A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Determination of the thermophysical properties of materials for simulating the process of fabrication of metallic granules,” Nauch.-Tekh. Vedom. SPbGPU, No. 3(202), 170 – 179 (2014).
24.
go back to reference V. T. Musienko, “Laws of formation of granules under centrifugal spraying of a rotating billet,” in: Granule Metallurgy [in Russian], VILS, Moscow (1983), Issue 1, pp. 41 – 48. V. T. Musienko, “Laws of formation of granules under centrifugal spraying of a rotating billet,” in: Granule Metallurgy [in Russian], VILS, Moscow (1983), Issue 1, pp. 41 – 48.
25.
go back to reference V. T. Musienko, “Special features of spraying of a rotating billet,” in: Granule Metallurgy [in Russian], VILS, Moscow (1986), Issue 3, pp. 23 – 33. V. T. Musienko, “Special features of spraying of a rotating billet,” in: Granule Metallurgy [in Russian], VILS, Moscow (1986), Issue 3, pp. 23 – 33.
26.
go back to reference G. I. Éskin, “Conditions of formation of nondendritic structure in ingots and granules of light and refractory nickel alloys,” Tekhnol. Legk. Splavov, No. 4, 147 – 159 (2013). G. I. Éskin, “Conditions of formation of nondendritic structure in ingots and granules of light and refractory nickel alloys,” Tekhnol. Legk. Splavov, No. 4, 147 – 159 (2013).
27.
go back to reference D. I. Sukhov, “Application of mathematical model for analyzing the effect of parameters of plasma spraying on the coarseness of granules of titanium alloy VT25UP,” Tekhnol. Legk. Splavov, No. 2, 57 – 68 (2013). D. I. Sukhov, “Application of mathematical model for analyzing the effect of parameters of plasma spraying on the coarseness of granules of titanium alloy VT25UP,” Tekhnol. Legk. Splavov, No. 2, 57 – 68 (2013).
28.
go back to reference V. K. Orlov, “Engineering computation of the aerodynamics of a particle under centrifugal spraying of melt,” in: Granule Metallurgy [in Russian], VILS, Moscow (1984), Issue 2, pp. 33 – 40. V. K. Orlov, “Engineering computation of the aerodynamics of a particle under centrifugal spraying of melt,” in: Granule Metallurgy [in Russian], VILS, Moscow (1984), Issue 2, pp. 33 – 40.
29.
go back to reference V. K. Orlov, “Computation of the rates of cooling of drops of sprayed metal in a gas environment,” in: Granule Metallurgy [in Russian], VILS, Moscow (1983), Issue 1, pp. 67 – 77. V. K. Orlov, “Computation of the rates of cooling of drops of sprayed metal in a gas environment,” in: Granule Metallurgy [in Russian], VILS, Moscow (1983), Issue 1, pp. 67 – 77.
30.
go back to reference I. V. Blinkov and A. V. Manukhin, Nanodisperse and Granulated Materials Obtained in Pulse Plasma [in Russian], Izd. MISiS, Moscow (2005), 367 p. I. V. Blinkov and A. V. Manukhin, Nanodisperse and Granulated Materials Obtained in Pulse Plasma [in Russian], Izd. MISiS, Moscow (2005), 367 p.
31.
go back to reference B. N. Guzanov, N. V. Obabkov, N. G. Belyankina, et al., “Ni – Cr – Al composition for plasma surfacing,” Zhashshit. Pokr. Met. (Kiev), No. 21, 38 – 41 (1987). B. N. Guzanov, N. V. Obabkov, N. G. Belyankina, et al., “Ni – Cr – Al composition for plasma surfacing,” Zhashshit. Pokr. Met. (Kiev), No. 21, 38 – 41 (1987).
32.
go back to reference A. Hasui and O. Morigaki, Surfacing and Spraying [Russian translation], Mashinostroenie, Moscow (1985), 345 p. A. Hasui and O. Morigaki, Surfacing and Spraying [Russian translation], Mashinostroenie, Moscow (1985), 345 p.
33.
go back to reference J.W. Bradley, H. Baeker, P. J. Kelly, and R. D. Arnell, “Time resolved Langmuir probe measurements in pulsed DC magnetron plasmas,” in: Poster Presentation at 7th Int. Conf. on Plasma Surface Engineering, PSE’00, Garmisch, Sept. 17 – 21 (2000). J.W. Bradley, H. Baeker, P. J. Kelly, and R. D. Arnell, “Time resolved Langmuir probe measurements in pulsed DC magnetron plasmas,” in: Poster Presentation at 7th Int. Conf. on Plasma Surface Engineering, PSE’00, Garmisch, Sept. 17 – 21 (2000).
34.
go back to reference N. I. Grechanyk, V. A. Osokin, I. N. Grechanyk, and R. V. Vinakova, “Composite materials on base of copper and molybdenum, condensed from vapor phase, for electric contacts. Structure, properties, technology. Part 1. State-of-the-art and prospects of application of technology of electron beam high-rate evaporation-condensation for producing materials of electric contacts,” Adv. Electrometallurgy, No. 2, 24 – 29 (2005). N. I. Grechanyk, V. A. Osokin, I. N. Grechanyk, and R. V. Vinakova, “Composite materials on base of copper and molybdenum, condensed from vapor phase, for electric contacts. Structure, properties, technology. Part 1. State-of-the-art and prospects of application of technology of electron beam high-rate evaporation-condensation for producing materials of electric contacts,” Adv. Electrometallurgy, No. 2, 24 – 29 (2005).
35.
go back to reference B. A. Movchan, I. S. Malashenko, V. I. Nikitin, et al., “Effect of Co – Cr – Al – Y coatings on the physicomechanical properties of alloy EI-893 of turbine rotor blades of GT-100 plant,” Prob. Spets. Électrometall., No. 1, 34 – 41 (1985). B. A. Movchan, I. S. Malashenko, V. I. Nikitin, et al., “Effect of Co – Cr – Al – Y coatings on the physicomechanical properties of alloy EI-893 of turbine rotor blades of GT-100 plant,” Prob. Spets. Électrometall., No. 1, 34 – 41 (1985).
36.
go back to reference N. I. Grechanuyk, P. P. Kucherenko, and R. V. Minakova, “Tendencies of development of processes of electron beam melting and high-temperature evaporation of metals and nonmetals in vacuum,” Tekh. Mashinostr., No. 2, 7 – 12 (2006). N. I. Grechanuyk, P. P. Kucherenko, and R. V. Minakova, “Tendencies of development of processes of electron beam melting and high-temperature evaporation of metals and nonmetals in vacuum,” Tekh. Mashinostr., No. 2, 7 – 12 (2006).
37.
go back to reference A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Mathematical model of controlled heating of substrates of rectangular shape in production of powder materials,” Nauch.-Tekh. Vedom. SPbGPU, No. 2(195), 85 – 92 (2014). A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Mathematical model of controlled heating of substrates of rectangular shape in production of powder materials,” Nauch.-Tekh. Vedom. SPbGPU, No. 2(195), 85 – 92 (2014).
38.
go back to reference A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Determination of the temperature field in scanning of a surface with electron beam in synthesis of powder articles,” Nauch.-Tekh. Vedom. SPbGPU, No. 2(195), 109 – 116 (2014). A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Determination of the temperature field in scanning of a surface with electron beam in synthesis of powder articles,” Nauch.-Tekh. Vedom. SPbGPU, No. 2(195), 109 – 116 (2014).
39.
go back to reference A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the process of electron-beam synthesis of articles from powder titanium alloy VT-6 with allowance for the heat of the phase transformation (Stefan two-phase problem),” Nauch.-Tekh. Vedom. SPbGPU, No. 3(202), 146 – 153 (2014). A. I. Rudskoy, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the process of electron-beam synthesis of articles from powder titanium alloy VT-6 with allowance for the heat of the phase transformation (Stefan two-phase problem),” Nauch.-Tekh. Vedom. SPbGPU, No. 3(202), 146 – 153 (2014).
Metadata
Title
New Approach to Synthesis of Powder and Composite Materials by Electron Beam. Part 1. Technological Features of the Process
Authors
A. I. Rudskoy
S. Yu. Kondrat’ev
Yu. A. Sokolov
Publication date
10-05-2016
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 1-2/2016
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-016-9959-x

Other articles of this Issue 1-2/2016

Metal Science and Heat Treatment 1-2/2016 Go to the issue

11th INTERNATIONAL SCIENTIFIC AND ENGINEERING CONFERENCE “MODERN METALLIC MATERIALS AND TECHNOLOGIES”

Layer Structure of a Refractory Multilayer Ti/Al Composite After Pressure Diffusion Welding

Premium Partners