Skip to main content
Top
Published in: Microsystem Technologies 4-5/2014

01-04-2014 | Technical Paper

Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes

Authors: J. Iannacci, E. Serra, R. Di Criscienzo, G. Sordo, M. Gottardi, A. Borrielli, M. Bonaldi, T. Kuenzig, G. Schrag, G. Pandraud, P. M. Sarro

Published in: Microsystem Technologies | Issue 4-5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work we discuss a novel design concept of energy harvester (EH), based on Microsystem (MEMS) technology, meant to convert mechanical energy, available in the form of vibrations scattered in the surrounding environment, into electrical energy by means of the piezoelectric conversion principle. The resonant structure, named four-leaf clover (FLC), is circular and based on four petal-like double mass-spring systems, kept suspended through four straight beams anchored to the surrounding Silicon frame. Differently from standard cantilever-type EHs that typically convert energy uniquely in correspondence with the fundamental vibration frequency, this particular shape is aimed to exploit multiple resonant modes and, thereby, to increase the performance and the operation bandwidth of the MEMS device. A preliminary non-optimized design of the FLC is discussed and physical samples of the sole mechanical resonator, fabricated at the DIMES Technology Center (Delft University of Technology, the Netherlands), are experimentally characterized. Their behaviour is compared against simulations performed in ANSYS Workbench™, confirming good accuracy of the predictive method. Furthermore, the electromechanical multiphysical behaviour of the FLC EH is also analysed in Workbench, by adding a layer with piezoelectric conversion properties in the simulation. The measured and simulated data reported in this paper confirm that the MEMS converter exhibits multiple resonant modes in the frequency range below 1 kHz, where most of the environmental vibration energy is scattered, and extracted power levels of 0.2 μW can be achieved as well, in closed-loop conditions. Further developments of this work are expected to fully prove the high-performance of the FLC concept, and are going to be addressed by the authors of this work in the on-going activities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:3CrossRef Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:3CrossRef
go back to reference Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. Proc. Transducers. 1649–1652 Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. Proc. Transducers. 1649–1652
go back to reference Arakawa Y, Suzuki Y, Kasagi N (2004) Micro seismic power generator using electret polymer film. Proc. PowerMEMS. 187–190 Arakawa Y, Suzuki Y, Kasagi N (2004) Micro seismic power generator using electret polymer film. Proc. PowerMEMS. 187–190
go back to reference Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. Proc. IEEE MEMS. 9–14 Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. Proc. IEEE MEMS. 9–14
go back to reference Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D Multi-Frequency MEMS Electromechanical Resonator Design. Proc. EuroSimE. 1–5 Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D Multi-Frequency MEMS Electromechanical Resonator Design. Proc. EuroSimE. 1–5
go back to reference Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. Proc. IEEE SAS. 1–4 Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. Proc. IEEE SAS. 1–4
go back to reference Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. Proc. IEEE MEMS. 1020–1023 Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. Proc. IEEE MEMS. 1020–1023
go back to reference Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. Proc. ISAF/ECAPD/PFM. 1–4 Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. Proc. ISAF/ECAPD/PFM. 1–4
go back to reference Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRef Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRef
go back to reference Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers RJM, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. Proc. IEEE IEDM. 29.5.1–29.5.4 Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers RJM, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. Proc. IEEE IEDM. 29.5.1–29.5.4
go back to reference Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRef Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRef
go back to reference Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-Silicon vibration energy harvester with integrated frequency-upconverting transducers. Proc. IEEE MEMS. 1269–1272 Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-Silicon vibration energy harvester with integrated frequency-upconverting transducers. Proc. IEEE MEMS. 1269–1272
go back to reference Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE J MEMS 21:1311–1320CrossRef Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE J MEMS 21:1311–1320CrossRef
go back to reference Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. Proc. PowerMEMS. 364–367 Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. Proc. PowerMEMS. 364–367
go back to reference Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectrics Electr Insulation 19:1291–1298 Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectrics Electr Insulation 19:1291–1298
go back to reference Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. Proc. IEEE MEMS. 1301–1304 Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. Proc. IEEE MEMS. 1301–1304
go back to reference Hoffmann D, Folkmer B, Manoli Y (2009) Fabrication, characterization and modelling of electrostatic micro-generators. IOP J Micromech Microeng 19:11 Hoffmann D, Folkmer B, Manoli Y (2009) Fabrication, characterization and modelling of electrostatic micro-generators. IOP J Micromech Microeng 19:11
go back to reference Iannacci J (2010) Mixed-domain fast simulation of RF and microwave MEMS-based complex networks within standard IC development frameworks. In: Zhurbenko V (ed) Advanced microwave circuits and systems, 1st edn. InTech, Rijeka, pp 313–338 Iannacci J (2010) Mixed-domain fast simulation of RF and microwave MEMS-based complex networks within standard IC development frameworks. In: Zhurbenko V (ed) Advanced microwave circuits and systems, 1st edn. InTech, Rijeka, pp 313–338
go back to reference Iannacci J (2013a) Compact Modeling of RF MEMS devices. In: Bechtold T, Schrag G, Feng L (eds) System-level modeling of MEMS, vol 10., 1st ednWiley-VCH Books, Weinheim, pp 191–209CrossRef Iannacci J (2013a) Compact Modeling of RF MEMS devices. In: Bechtold T, Schrag G, Feng L (eds) System-level modeling of MEMS, vol 10., 1st ednWiley-VCH Books, Weinheim, pp 191–209CrossRef
go back to reference Iannacci J (2013b) Practical Guide to RF–MEMS, 1st edn. Wiley-VCH Books, WeinheimCrossRef Iannacci J (2013b) Practical Guide to RF–MEMS, 1st edn. Wiley-VCH Books, WeinheimCrossRef
go back to reference Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic Optimisation of an RF-MEMS Wafer-Level Package. Elsevier Sensors and Actuators A: Physical, Special Issue of Eurosensors XX 2006 Conference, 142:434–441 Iannacci J, Bartek M, Tian J, Gaddi R, Gnudi A (2008) Electromagnetic Optimisation of an RF-MEMS Wafer-Level Package. Elsevier Sensors and Actuators A: Physical, Special Issue of Eurosensors XX 2006 Conference, 142:434–441
go back to reference Iannacci J, Repchankova A, Faes A, Tazzoli A, Meneghesso G, Dalla Betta GF (2010a) Enhancement of RF MEMS switch reliability through an active anti-stiction heat-based mechanism. Microelectron Reliab 50:1599–1603CrossRef Iannacci J, Repchankova A, Faes A, Tazzoli A, Meneghesso G, Dalla Betta GF (2010a) Enhancement of RF MEMS switch reliability through an active anti-stiction heat-based mechanism. Microelectron Reliab 50:1599–1603CrossRef
go back to reference Iannacci J, Gaddi R, Gnudi A (2010b) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Systems 19:526–537CrossRef Iannacci J, Gaddi R, Gnudi A (2010b) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Systems 19:526–537CrossRef
go back to reference Iannacci J, Faes A, Repchankova A, Tazzoli A, Meneghesso G (2011) An active heat-based restoring mechanism for improving the reliability of RF-MEMS switches. Microelectron Reliab 51:1869–1873CrossRef Iannacci J, Faes A, Repchankova A, Tazzoli A, Meneghesso G (2011) An active heat-based restoring mechanism for improving the reliability of RF-MEMS switches. Microelectron Reliab 51:1869–1873CrossRef
go back to reference Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, Berlin Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, Berlin
go back to reference Koukarenko E, Beeby S, Tudor M, White N, O’Donnell T, Saha T, Kulkani S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Springer Microsystem Technol J 12:1071–1077CrossRef Koukarenko E, Beeby S, Tudor M, White N, O’Donnell T, Saha T, Kulkani S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Springer Microsystem Technol J 12:1071–1077CrossRef
go back to reference Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. Proc. ISWC. 132–139 Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. Proc. ISWC. 132–139
go back to reference Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. Proc. IEEE MEMS. 1277–1280 Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. Proc. IEEE MEMS. 1277–1280
go back to reference Meirovitch L (2010) Fundamentals of Vibrations. Waveland Press Inc., Long Grove Meirovitch L (2010) Fundamentals of Vibrations. Waveland Press Inc., Long Grove
go back to reference Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. Proc. IEEE MEMS. 1221–1224 Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. Proc. IEEE MEMS. 1221–1224
go back to reference Repchankova A, Iannacci J (2009) Heat-based recovery mechanism to counteract stiction of RF-MEMS switches. Proc. DTIP. 176–181 Repchankova A, Iannacci J (2009) Heat-based recovery mechanism to counteract stiction of RF-MEMS switches. Proc. DTIP. 176–181
go back to reference Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRef Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRef
go back to reference Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. Proc. of Transducers. 2642–2645 Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. Proc. of Transducers. 2642–2645
go back to reference Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Proc. IEEE MEMS. 1237–1240 Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Proc. IEEE MEMS. 1237–1240
go back to reference Tian J, Sosin S, Iannacci J, Gaddi R, Bartek M (2008) RF MEMS wafer-level packaging using through-wafer interconnect. Elsevier Sensors and Actuators A: Physical, Special Issue: Eurosensors XX 2006 Conference. 142:442–451 Tian J, Sosin S, Iannacci J, Gaddi R, Bartek M (2008) RF MEMS wafer-level packaging using through-wafer interconnect. Elsevier Sensors and Actuators A: Physical, Special Issue: Eurosensors XX 2006 Conference. 142:442–451
go back to reference Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. Proc. IEEE INTELEC. 1–6 Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. Proc. IEEE INTELEC. 1–6
go back to reference Tran AT, Wunnicke O, Pandraud G, Nguyen MD, Schellevis H, Sarro PM (2013) Slender piezoelectric cantilevers of high quality AlN layers sputtered on Ti thin film for MEMS actuators. Elsevier Sensors and Actuators A: Physical. doi:10.1016/j.sna.2013.01.047 Tran AT, Wunnicke O, Pandraud G, Nguyen MD, Schellevis H, Sarro PM (2013) Slender piezoelectric cantilevers of high quality AlN layers sputtered on Ti thin film for MEMS actuators. Elsevier Sensors and Actuators A: Physical. doi:10.​1016/​j.​sna.​2013.​01.​047
go back to reference Wang P, Dai X, Zhao X, Ding G (2009) A micro electromagnetic vibration energy harvester with sandwiched structure and air channel for high energy conversion efficiency. Proc. PowerMEMS. 296–299 Wang P, Dai X, Zhao X, Ding G (2009) A micro electromagnetic vibration energy harvester with sandwiched structure and air channel for high energy conversion efficiency. Proc. PowerMEMS. 296–299
go back to reference Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Tan YK (ed) Sustainable energy harvesting technologies—past, present and future, 1st edn. InTech, Rijeka, pp 25–47 Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Tan YK (ed) Sustainable energy harvesting technologies—past, present and future, 1st edn. InTech, Rijeka, pp 25–47
go back to reference Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef
go back to reference Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per OÅ, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J Appl Phys 111:7CrossRef Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per OÅ, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J Appl Phys 111:7CrossRef
Metadata
Title
Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes
Authors
J. Iannacci
E. Serra
R. Di Criscienzo
G. Sordo
M. Gottardi
A. Borrielli
M. Bonaldi
T. Kuenzig
G. Schrag
G. Pandraud
P. M. Sarro
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4-5/2014
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-1998-2

Other articles of this Issue 4-5/2014

Microsystem Technologies 4-5/2014 Go to the issue