Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2015

01-03-2015 | RESEARCH PAPER

Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach

Authors: David Guirguis, Karim Hamza, Mohamed Aly, Hesham Hegazi, Kazuhiro Saitou

Published in: Structural and Multidisciplinary Optimization | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper explores a framework for topology optimization of multi-component sheet metal structures, such as those often used in the automotive industry. The primary reason for having multiple components in a structure is to reduce the manufacturing cost, which can become prohibitively expensive otherwise. Having a multi-component structure necessitates re-joining, which often comes at sacrifices in the assembly cost, weight and structural performance. The problem of designing a multi-component structure is thus posed in a multi-objective framework. Approaches to solve the problem may be classified into single and two stage approaches. Two-stage approaches start by focusing solely on structural performance in order to obtain optimal monolithic (single piece) designs, and then the decomposition into multiple components is considered without changing the base topology (identical to the monolithic design). Single-stage approaches simultaneously attempt to optimize both the base topology and its decomposition. Decomposition is an inherently discrete problem, and as such, non-gradient methods are needed for single-stage and second stage of two-stage approaches. This paper adopts an implicit formulation (level-sets) of the design variables, which significantly reduces the number of design variables needed in either single or two stage approaches. The number of design variables in the formulation is independent from the meshing size, which enables application of non-gradient methods to realistic designs. Test results of a short cantilever and an L-shaped bracket studies show reasonable success of both single and two stage approaches, with each approach having different merits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allaire G, Jouve F, Maillot H (2004a) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98CrossRefMATHMathSciNet Allaire G, Jouve F, Maillot H (2004a) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98CrossRefMATHMathSciNet
go back to reference Allaire G, Jouve F, Toader AM (2004b) Structural optimization using a sensitivity analysis and a level-set method. J Comput Phys 194:363–393CrossRefMATHMathSciNet Allaire G, Jouve F, Toader AM (2004b) Structural optimization using a sensitivity analysis and a level-set method. J Comput Phys 194:363–393CrossRefMATHMathSciNet
go back to reference Almeida S, Paulino G, Silva E (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidiscip Optim 39(4):359–371CrossRefMathSciNet Almeida S, Paulino G, Silva E (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidiscip Optim 39(4):359–371CrossRefMathSciNet
go back to reference Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH
go back to reference Azegami H, Fukumoto S, Aoyama T (2013) Shape optimization of continua using NURBS as basis functions. Struct Multidiscip Optim 47(2):247–258CrossRefMATHMathSciNet Azegami H, Fukumoto S, Aoyama T (2013) Shape optimization of continua using NURBS as basis functions. Struct Multidiscip Optim 47(2):247–258CrossRefMATHMathSciNet
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef
go back to reference Boothroyd G, Dewhurst P, Knight W (1994) Product design for manufacturing and assembly. Marcel Dekker, New York Boothroyd G, Dewhurst P, Knight W (1994) Product design for manufacturing and assembly. Marcel Dekker, New York
go back to reference Burns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRef Burns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRef
go back to reference Chickermane H, Gea HC (1997) Design of multi-component structural system for optimal layout topology and joint locations. Eng Comput 13:235–243CrossRef Chickermane H, Gea HC (1997) Design of multi-component structural system for optimal layout topology and joint locations. Eng Comput 13:235–243CrossRef
go back to reference De Ruiter MJ, Van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26:406–416CrossRef De Ruiter MJ, Van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscip Optim 26:406–416CrossRef
go back to reference Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38CrossRefMathSciNet Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38CrossRefMathSciNet
go back to reference Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465CrossRefMATH Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465CrossRefMATH
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef
go back to reference Denardo EV (2003) Dynamic programming: models and applications. Dover Publications, Mineola Denardo EV (2003) Dynamic programming: models and applications. Dover Publications, Mineola
go back to reference Diaz A, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization using a homogenization method. Int J Numer Methods Eng 35:487–502MathSciNet Diaz A, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization using a homogenization method. Int J Numer Methods Eng 35:487–502MathSciNet
go back to reference Gea HC, Luo J (2001) Design for energy absorption: a topology optimization approach. ASME IDETC DAC-21060, Montreal Gea HC, Luo J (2001) Design for energy absorption: a topology optimization approach. ASME IDETC DAC-21060, Montreal
go back to reference Guest JK, Genut LCS (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045MATH Guest JK, Genut LCS (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81(8):1019–1045MATH
go back to reference Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHMathSciNet Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHMathSciNet
go back to reference Guirguis D, Aly M, Hamza K, Hegazi H (2014) Image matching assessment of attainable topology via kriging-interpolated level-sets. ASME IDETC DETC2014-34622, BuffaloCrossRef Guirguis D, Aly M, Hamza K, Hegazi H (2014) Image matching assessment of attainable topology via kriging-interpolated level-sets. ASME IDETC DETC2014-34622, BuffaloCrossRef
go back to reference Hamza K, Aly M, Hegazi H, Saitou K (2013a) Multi-objective topology optimization of multi-component continuum structures via an explicit level-set approach. 10th world congress on structural and multidisciplinary optimization, Orlando, FL Hamza K, Aly M, Hegazi H, Saitou K (2013a) Multi-objective topology optimization of multi-component continuum structures via an explicit level-set approach. 10th world congress on structural and multidisciplinary optimization, Orlando, FL
go back to reference Hamza K, Aly M, Hegazi H (2013b) An explicit level-set approach for structural topology optimization. ASME IDETC DETC2013-12155, PortlandCrossRef Hamza K, Aly M, Hegazi H (2013b) An explicit level-set approach for structural topology optimization. ASME IDETC DETC2013-12155, PortlandCrossRef
go back to reference Hamza K, Aly M, Hegazi H (2013c) A kriging-interpolated level-Set approach for structural topology optimization. J Mech Des 136(1):011008CrossRef Hamza K, Aly M, Hegazi H (2013c) A kriging-interpolated level-Set approach for structural topology optimization. J Mech Des 136(1):011008CrossRef
go back to reference James KA, Martins JR (2012) An isoparametric approach to level set topology optimization using a body-fitted finite-element mesh. Comput Struct 90–91:97–106CrossRef James KA, Martins JR (2012) An isoparametric approach to level set topology optimization using a body-fitted finite-element mesh. Comput Struct 90–91:97–106CrossRef
go back to reference Jiang T, Chirehdast M (1997) A systems approach to structural topology optimization: designing optimal connections. J Mech Des 119:40–47CrossRef Jiang T, Chirehdast M (1997) A systems approach to structural topology optimization: designing optimal connections. J Mech Des 119:40–47CrossRef
go back to reference Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307CrossRef Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307CrossRef
go back to reference Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef
go back to reference Li Q, Steven GP, Xie YM (2001) Evolutionary structural optimization for connection topology design of multi-component systems. Eng Comput 18(3–4):460–479CrossRefMATH Li Q, Steven GP, Xie YM (2001) Evolutionary structural optimization for connection topology design of multi-component systems. Eng Comput 18(3–4):460–479CrossRefMATH
go back to reference Liu X, Lee E, Gea HC, Du PA (2011) Compliant mechanism design using a strain based topology optimization method. ASME IDETC DETC2011-48525, Washington DC Liu X, Lee E, Gea HC, Du PA (2011) Compliant mechanism design using a strain based topology optimization method. ASME IDETC DETC2011-48525, Washington DC
go back to reference Madeira A, Rodrigues JF, Pina H (2005) Multi-objective optimization of structures topology by genetic algorithms. Adv Eng Softw 36:21–28CrossRefMATH Madeira A, Rodrigues JF, Pina H (2005) Multi-objective optimization of structures topology by genetic algorithms. Adv Eng Softw 36:21–28CrossRefMATH
go back to reference Mayer R, Kikuchi N, Scott R (1996) Application of topological optimization techniques to structural crashworthiness. Int J Numer Methods Eng 39(8):1383–1403CrossRefMATH Mayer R, Kikuchi N, Scott R (1996) Application of topological optimization techniques to structural crashworthiness. Int J Numer Methods Eng 39(8):1383–1403CrossRefMATH
go back to reference Michalewiz Z, Fogel D (2000) How to solve it: modern heuristics. Springer-Verlag Berlin Heidelberg, New YorkCrossRef Michalewiz Z, Fogel D (2000) How to solve it: modern heuristics. Springer-Verlag Berlin Heidelberg, New YorkCrossRef
go back to reference Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49CrossRefMathSciNet Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49CrossRefMathSciNet
go back to reference Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21(2):90–108CrossRef Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21(2):90–108CrossRef
go back to reference Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237CrossRefMATHMathSciNet Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237CrossRefMATHMathSciNet
go back to reference Saitou K, Nishiwaki S, Izui K, Papalambros P (2005) A survey on structural optimization in product development. J Comput Inf Sci Eng 5(3):214–226CrossRef Saitou K, Nishiwaki S, Izui K, Papalambros P (2005) A survey on structural optimization in product development. J Comput Inf Sci Eng 5(3):214–226CrossRef
go back to reference Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRef Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRef
go back to reference Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21(2):120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 21(2):120–127CrossRef
go back to reference Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef
go back to reference Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNet
go back to reference Simpson T, Booker A, Ghosh D, Giunta A, Koch P, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27:302–313CrossRef Simpson T, Booker A, Ghosh D, Giunta A, Koch P, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27:302–313CrossRef
go back to reference Wang MY, Li L (2013) Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization. Struct Multidiscip Optim 47:335–352CrossRefMATHMathSciNet Wang MY, Li L (2013) Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization. Struct Multidiscip Optim 47:335–352CrossRefMATHMathSciNet
go back to reference Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65:2060–2090CrossRefMATH Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65:2060–2090CrossRefMATH
go back to reference Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246CrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246CrossRefMATH
go back to reference Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78:379–402CrossRefMATH Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78:379–402CrossRefMATH
go back to reference Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef
go back to reference Xu S, Deng X (2004) An evaluation of simplified finite element models for spot-welded joints. Finite Elem Anal Des 40:1175–1194CrossRef Xu S, Deng X (2004) An evaluation of simplified finite element models for spot-welded joints. Finite Elem Anal Des 40:1175–1194CrossRef
go back to reference Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891CrossRefMATHMathSciNet Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891CrossRefMATHMathSciNet
go back to reference Yildiz A, Saitou K (2011) Topology synthesis of multi-component structural assemblies in continuum domains. J Mech Des 133:011008CrossRef Yildiz A, Saitou K (2011) Topology synthesis of multi-component structural assemblies in continuum domains. J Mech Des 133:011008CrossRef
go back to reference Zhou Z, Hamza K, Saitou K (2011a) Decomposition templates and joint morphing operators for genetic algorithm optimization of multi-component structural topology. ASME IDETC DETC2011-48572, Washington DC Zhou Z, Hamza K, Saitou K (2011a) Decomposition templates and joint morphing operators for genetic algorithm optimization of multi-component structural topology. ASME IDETC DETC2011-48572, Washington DC
go back to reference Zhou Z, Hamza K, Saitou K (2011b) Multi-objective topology optimization of spot-welded planar multi-component continuum structures. 9th world congress on structural and multidisciplinary optimization, Shizuoka, Japan Zhou Z, Hamza K, Saitou K (2011b) Multi-objective topology optimization of spot-welded planar multi-component continuum structures. 9th world congress on structural and multidisciplinary optimization, Shizuoka, Japan
go back to reference Zitler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRef Zitler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRef
Metadata
Title
Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach
Authors
David Guirguis
Karim Hamza
Mohamed Aly
Hesham Hegazi
Kazuhiro Saitou
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 3/2015
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1154-3

Other articles of this Issue 3/2015

Structural and Multidisciplinary Optimization 3/2015 Go to the issue

Premium Partners