Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

04-05-2021

Multihop Multibranch Spectrum Sensing with Energy Harvesting

Authors: Raed Alhamad, Hatem Boujemaa

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper deals with spectrum sensing using the energy detector (ED) with multiple hops multibranch relaying where the primary user (PU) and relays harvest energy from radio frequency signal transmitted from a given node A. The harvested energy is used by PU and relays to transmit signals to the fusion center where the ED is used to detect the PU. The study is valid for amplify and forward relaying, any number of hops and any number of branches. We also suggest a new lower bound of the detection probability using the cumulative distribution function of signal-to-noise ratio (SNR). When there are many available branches, only the best one is activated. The activated branch offers the highest end-to-end SNR.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhan, J., Liu, Y., Tang, X., & Chen, Q. (2018). Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Networks Year, 7(3), 109–118.CrossRef Zhan, J., Liu, Y., Tang, X., & Chen, Q. (2018). Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Networks Year, 7(3), 109–118.CrossRef
2.
go back to reference Xiuping, W., Feng, Y., & Tian, Z. (2018). The DF-AF selection relay transmission based on energy harvesting. In 10th International conference on measuring technology and mechatronics automation (ICMTMA) (pp. 174–177). Xiuping, W., Feng, Y., & Tian, Z. (2018). The DF-AF selection relay transmission based on energy harvesting. In 10th International conference on measuring technology and mechatronics automation (ICMTMA) (pp. 174–177).
3.
go back to reference Nguyen, H. T., Nguyen, S. Q. & Hwang, W.-J. (2018). Outage probability of energy harvesting relay systems under unreliable backhaul connections. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 19–23). Nguyen, H. T., Nguyen, S. Q. & Hwang, W.-J. (2018). Outage probability of energy harvesting relay systems under unreliable backhaul connections. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 19–23).
4.
go back to reference Qiu, C., Hu, Y., & Chen, Y. (2018). Lyapunov optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet of Things Journal, 5(2), 1323–1333.CrossRef Qiu, C., Hu, Y., & Chen, Y. (2018). Lyapunov optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet of Things Journal, 5(2), 1323–1333.CrossRef
5.
go back to reference Sui, D., Fengye, H., Zhou, W., Shao, M., & Chen, M. (2018). Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 5(2), 1100–1107.CrossRef Sui, D., Fengye, H., Zhou, W., Shao, M., & Chen, M. (2018). Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 5(2), 1100–1107.CrossRef
6.
go back to reference Hoang, T. M., Tan, N. T., & Choi, S. G. (2018). Analysis of partial relay selection in NOMA systems with RF energy harvesting. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 13–18). Hoang, T. M., Tan, N. T., & Choi, S. G. (2018). Analysis of partial relay selection in NOMA systems with RF energy harvesting. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 13–18).
7.
go back to reference Nhat Le, Q., Quoc Bao, V. N., An, B., & Quang Nhat Le. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.CrossRef Nhat Le, Q., Quoc Bao, V. N., An, B., & Quang Nhat Le. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.CrossRef
8.
go back to reference Gong, J., Chen, X., & Xia, M. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.CrossRef Gong, J., Chen, X., & Xia, M. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.CrossRef
9.
go back to reference Tang, H., Xie, X., & Chen, J. (2018). X-duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In 27th Wireless and optical communication conference (WOCC) (pp. 1–6). Tang, H., Xie, X., & Chen, J. (2018). X-duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In 27th Wireless and optical communication conference (WOCC) (pp. 1–6).
10.
go back to reference Chiu, H.-C. & Huang, W.-J. (2018). Precoding design in two-way cooperative system with energy harvesting relay. In 27th Wireless and optical communication conference (WOCC) (pp. 1–5). Chiu, H.-C. & Huang, W.-J. (2018). Precoding design in two-way cooperative system with energy harvesting relay. In 27th Wireless and optical communication conference (WOCC) (pp. 1–5).
11.
go back to reference Gurjar, D. S., Singh, U., & Upadhyay, P. K. (2018). Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Gurjar, D. S., Singh, U., & Upadhyay, P. K. (2018). Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6).
12.
go back to reference Singh, K., Ku, M. L., Lin, J. C., & Ratnarajah, T. (2018). Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 17, 4971–4986.CrossRef Singh, K., Ku, M. L., Lin, J. C., & Ratnarajah, T. (2018). Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 17, 4971–4986.CrossRef
13.
go back to reference Wu, Y., ping Qian, L., Huang, L., & Shen, X. (2018). Optimal Relay Selection and Power Control for Energy-Harvesting Wireless Relay Networks’. IEEE Transactions on Green Communications and Networking, 2(2), 471–481.CrossRef Wu, Y., ping Qian, L., Huang, L., & Shen, X. (2018). Optimal Relay Selection and Power Control for Energy-Harvesting Wireless Relay Networks’. IEEE Transactions on Green Communications and Networking, 2(2), 471–481.CrossRef
14.
go back to reference Fan, R., Atapattu, S., Chen, W., Zhang, Y., & Evans, J. (2018). Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access, 6, 24582–24595.CrossRef Fan, R., Atapattu, S., Chen, W., Zhang, Y., & Evans, J. (2018). Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access, 6, 24582–24595.CrossRef
15.
go back to reference Huang, Y., Wang, J., Zhang, P., & WuWu, Q. (2018). Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access, 6, 5654–5665.CrossRef Huang, Y., Wang, J., Zhang, P., & WuWu, Q. (2018). Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access, 6, 5654–5665.CrossRef
16.
go back to reference Babaei, M., Aygolu, U., & Basar, E. (2018). BER analysis of dual-hop relaying with energy harvesting in Nakagami-m fading channel. IEEE Transactions on Wireless Communications, 17, 4352–4361.CrossRef Babaei, M., Aygolu, U., & Basar, E. (2018). BER analysis of dual-hop relaying with energy harvesting in Nakagami-m fading channel. IEEE Transactions on Wireless Communications, 17, 4352–4361.CrossRef
17.
go back to reference Kalluri, T., Peer, M., Bohara, V. A., da Costa, D. B., & Dias, U. S. (2018). Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Communications, 12(7), 838–847.CrossRef Kalluri, T., Peer, M., Bohara, V. A., da Costa, D. B., & Dias, U. S. (2018). Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Communications, 12(7), 838–847.CrossRef
18.
go back to reference Xie, D., Lai, X., Lei, X., & Fan, L. (2018). Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access, 6, 5596–5606.CrossRef Xie, D., Lai, X., Lei, X., & Fan, L. (2018). Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access, 6, 5596–5606.CrossRef
19.
go back to reference Yan, Z., Chen, S., Zhang, X., & Liu, H. L. (2018). Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet of Things Journal, 54, 2691–2699.CrossRef Yan, Z., Chen, S., Zhang, X., & Liu, H. L. (2018). Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet of Things Journal, 54, 2691–2699.CrossRef
20.
go back to reference Nhat, T. T., Duy, T. T., & Bao, V. N. Q. (2018). Performance evaluation of cooperative relay networks with one full-energy relay and one energy harvesting relay. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 7–12). Nhat, T. T., Duy, T. T., & Bao, V. N. Q. (2018). Performance evaluation of cooperative relay networks with one full-energy relay and one energy harvesting relay. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 7–12).
21.
go back to reference Van Nhan, V., Nguyen, T. G., So-In, C., Ahmed Baig, Z., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.CrossRef Van Nhan, V., Nguyen, T. G., So-In, C., Ahmed Baig, Z., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.CrossRef
22.
go back to reference Behdad, Z., Mahdavi, M., & Razmi, N. (2018). A new relay policy in RF energy harvesting for IoT networks-a cooperative network approach. IEEE Internet of Things Journal, 5, 2715–2728.CrossRef Behdad, Z., Mahdavi, M., & Razmi, N. (2018). A new relay policy in RF energy harvesting for IoT networks-a cooperative network approach. IEEE Internet of Things Journal, 5, 2715–2728.CrossRef
23.
go back to reference Yao, R., Lu, Y., Tsiftsis, T. A., Qi, N., Mekkawy, T., & Xu, F. (2018). Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 6, 19238–19246.CrossRef Yao, R., Lu, Y., Tsiftsis, T. A., Qi, N., Mekkawy, T., & Xu, F. (2018). Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 6, 19238–19246.CrossRef
24.
go back to reference Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access, 6, 12074–12084.CrossRef Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access, 6, 12074–12084.CrossRef
25.
go back to reference Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. S. (2017). On secure underlay mimo cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1, 192–203.CrossRef Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. S. (2017). On secure underlay mimo cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1, 192–203.CrossRef
26.
go back to reference Hindia, M. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113, 1241–1262.CrossRef Hindia, M. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113, 1241–1262.CrossRef
27.
go back to reference Hindia, N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2018). Energy efficiency in cognitive radio network using cooperative spectrum sensing. Wireless Personal Communications 907–919. Hindia, N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2018). Energy efficiency in cognitive radio network using cooperative spectrum sensing. Wireless Personal Communications 907–919.
28.
go back to reference Claudino, L., & Abrao, T. (2017). Spectrum sensing methods for cognitive radio networks: A review. Wireless Personal Communications, 95, 5003–5037.CrossRef Claudino, L., & Abrao, T. (2017). Spectrum sensing methods for cognitive radio networks: A review. Wireless Personal Communications, 95, 5003–5037.CrossRef
29.
go back to reference Liu, R., Ma, Y., Zhang, X., & Gao, Y. (2021). Deep learning-based spectrum sensing in space-air-ground integrated networks. Journal of Communications and Information Networks, 6(1), 82–90. Liu, R., Ma, Y., Zhang, X., & Gao, Y. (2021). Deep learning-based spectrum sensing in space-air-ground integrated networks. Journal of Communications and Information Networks, 6(1), 82–90.
30.
go back to reference Girmay, M., Shahid, A., Maglogiannis, V., Naudts, D., & Moerman, I. (2021). Machine learning enabled Wi-Fi saturation sensing for fair coexistence in unlicensed spectrum. IEEE Access, 9, 42959–42974.CrossRef Girmay, M., Shahid, A., Maglogiannis, V., Naudts, D., & Moerman, I. (2021). Machine learning enabled Wi-Fi saturation sensing for fair coexistence in unlicensed spectrum. IEEE Access, 9, 42959–42974.CrossRef
31.
go back to reference Li, J., Chen, Q., Long, Z., Wang, W., Zhu, H., & Wang, L. (2021). Spectrum sensing with non-Gaussian noise over multi-path fading channels towards smart cities with IoT. IEEE Access, 9, 11194–11202.CrossRef Li, J., Chen, Q., Long, Z., Wang, W., Zhu, H., & Wang, L. (2021). Spectrum sensing with non-Gaussian noise over multi-path fading channels towards smart cities with IoT. IEEE Access, 9, 11194–11202.CrossRef
32.
go back to reference Wang, D., Qi, P., Fu, Q., Zhang, N., & Li, Z. (2021). Multiple high-order cumulants based spectrum sensing in full-duplex enabled cognitive IoT networks. IEEE Internet of Things Journal. Wang, D., Qi, P., Fu, Q., Zhang, N., & Li, Z. (2021). Multiple high-order cumulants based spectrum sensing in full-duplex enabled cognitive IoT networks. IEEE Internet of Things Journal.
33.
go back to reference Alhamad, R., & Boujemaa, H. (2018). Cooperative spectrum sensing with relay selection. Telecom Systems, 68(4), 631–642.CrossRef Alhamad, R., & Boujemaa, H. (2018). Cooperative spectrum sensing with relay selection. Telecom Systems, 68(4), 631–642.CrossRef
34.
go back to reference Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.CrossRef Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.CrossRef
35.
go back to reference Hasna, M. O., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.CrossRef Hasna, M. O., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.CrossRef
Metadata
Title
Multihop Multibranch Spectrum Sensing with Energy Harvesting
Authors
Raed Alhamad
Hatem Boujemaa
Publication date
04-05-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08491-3

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue