Skip to main content
Top

2013 | OriginalPaper | Chapter

Multiscale Modelling of Lymphatic Drainage

Authors : Tiina Roose, Gavin Tabor

Published in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we will describe the latest developments in the area of lymphatic modelling. The lymphatic system is one of the key elements of the human circulation, serving the dual functions of draining interstitial fluid and returning this to the general blood circulation, together with processing this lymph fluid which is a key component of the body’s immune response system. Compared to the main cardiovascular system however, remarkably little modelling has been attempted. At the same time, the distribution of pumping activity (contractile lymphangions coupled with simple valves) throughout the system, passive primary lymphatics and complex lymph nodes combining to form an active network, makes the system a prime candidate for multiscale modelling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arkill, K.P., Moger, J., Winlove, C.P.: The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216, 547–555 (2010)CrossRef Arkill, K.P., Moger, J., Winlove, C.P.: The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216, 547–555 (2010)CrossRef
2.
go back to reference Baldazzi, V., Paci, P., Bernaschi, M., Castiglione, F.: Modelling lymphocyte homing and encounters in lymph nodes. BMC Bioinform. 10, 387–398 (2009)CrossRef Baldazzi, V., Paci, P., Bernaschi, M., Castiglione, F.: Modelling lymphocyte homing and encounters in lymph nodes. BMC Bioinform. 10, 387–398 (2009)CrossRef
3.
go back to reference Bergel, D.H.: The static elastic properties of the arterial wall. J. Physiol. 156, 445–457 (1961) Bergel, D.H.: The static elastic properties of the arterial wall. J. Physiol. 156, 445–457 (1961)
4.
go back to reference Berk, D.A., Swartz, M.A., Leu, A.J., Jain, R.K.: Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. Heart Circ. Physiol. 270, H330–H337 (1996) Berk, D.A., Swartz, M.A., Leu, A.J., Jain, R.K.: Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. Heart Circ. Physiol. 270, H330–H337 (1996)
5.
go back to reference Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133, 011008-1–011008-10 (2011) Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133, 011008-1–011008-10 (2011)
6.
go back to reference Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)CrossRef Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)CrossRef
7.
go back to reference Cassella, M., Skobe, M.: Lymphatic vessel activation in cancer. Ann. N. Y. Acad. Sci. 979, 120–130 (2002)CrossRef Cassella, M., Skobe, M.: Lymphatic vessel activation in cancer. Ann. N. Y. Acad. Sci. 979, 120–130 (2002)CrossRef
8.
go back to reference Collins, T.P., Tabor, G.R., Young, P.G.: A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829–836 (2007)CrossRef Collins, T.P., Tabor, G.R., Young, P.G.: A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829–836 (2007)CrossRef
9.
go back to reference Drake, R.E., Allen, S.J., Katz, J., Gabel, J.C., Laine, G.A.: Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251, H1090–H1094 (1986) Drake, R.E., Allen, S.J., Katz, J., Gabel, J.C., Laine, G.A.: Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251, H1090–H1094 (1986)
10.
go back to reference Friedman, A., Lolas, G.: Analysis of a mathematical model of tumor lymphangiogeneis. Math. Models Meth. Appl. Sci. 15, 95–107 (2005)MathSciNetMATHCrossRef Friedman, A., Lolas, G.: Analysis of a mathematical model of tumor lymphangiogeneis. Math. Models Meth. Appl. Sci. 15, 95–107 (2005)MathSciNetMATHCrossRef
11.
12.
go back to reference Galie, P., Spilker, R.L.: A two-dimensional computational model of lymph transport across primary lymphatic valves. J. Biomech. Eng. 131, 1297–1307 (2009)CrossRef Galie, P., Spilker, R.L.: A two-dimensional computational model of lymph transport across primary lymphatic valves. J. Biomech. Eng. 131, 1297–1307 (2009)CrossRef
13.
go back to reference Gnepp, D.R.: Lymphatics. In: Staub, N.C., Taylor, A.E. (eds) Edema, pp. 263–298. Raven Press, New York (1984) Gnepp, D.R.: Lymphatics. In: Staub, N.C., Taylor, A.E. (eds) Edema, pp. 263–298. Raven Press, New York (1984)
14.
go back to reference Gnepp, D.R., Green, F.H.: Scanning electron microscopy of collecting lymphatic vessels and their comparison to arteries and veins. Scan. Electron Microsc. 3, 756–762 (1979) Gnepp, D.R., Green, F.H.: Scanning electron microscopy of collecting lymphatic vessels and their comparison to arteries and veins. Scan. Electron Microsc. 3, 756–762 (1979)
15.
go back to reference Gnepp, D.R., Green, F.H.Y.: Scanning electron-microscopic study of canine lymphatic vessels. Lymphology 13(2), 91–99 (1980) Gnepp, D.R., Green, F.H.Y.: Scanning electron-microscopic study of canine lymphatic vessels. Lymphology 13(2), 91–99 (1980)
16.
17.
go back to reference Guo, Z., Sloot, P.M.A., Tay, J.C.: A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255, 163–175 (2008)MathSciNetCrossRef Guo, Z., Sloot, P.M.A., Tay, J.C.: A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255, 163–175 (2008)MathSciNetCrossRef
18.
go back to reference Hajjami, H.M.-E., Petrova, T.V.: Developmental and pathological lymphangiogenesis: from models to human disease. Histochem. Cell Biol. 130, 1063–1078 (2008)CrossRef Hajjami, H.M.-E., Petrova, T.V.: Developmental and pathological lymphangiogenesis: from models to human disease. Histochem. Cell Biol. 130, 1063–1078 (2008)CrossRef
19.
go back to reference Jain, R.K.: Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001)CrossRef Jain, R.K.: Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001)CrossRef
20.
go back to reference Jussila, L., Alitalo, K.: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700 (2002) Jussila, L., Alitalo, K.: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700 (2002)
21.
go back to reference Lambert, M.W., Benoit, J.N.: Mathematical model of intestinal lymph flow and lymphatic pumping. FASEB J. 6(5), A2078 (1992) Lambert, M.W., Benoit, J.N.: Mathematical model of intestinal lymph flow and lymphatic pumping. FASEB J. 6(5), A2078 (1992)
22.
go back to reference Lauweryns, J.M.: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves. Lymphology 4(4), 125–132 (1971) Lauweryns, J.M.: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves. Lymphology 4(4), 125–132 (1971)
23.
go back to reference Leak, L.V.: Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc. Res. 2, 361–391 (1970)CrossRef Leak, L.V.: Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc. Res. 2, 361–391 (1970)CrossRef
24.
go back to reference Li, B., Silver, I., Szalai, J. P., Johnson, M. G.: Pressure–volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc. Res. 56, 127–138 (1998)CrossRef Li, B., Silver, I., Szalai, J. P., Johnson, M. G.: Pressure–volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc. Res. 56, 127–138 (1998)CrossRef
25.
go back to reference Macdonald, A., Tabor, G., Winlove, C.P., Arkill, K., McHale, N.: Computational and experimental analysis of lymphatic valves. J. Biomech. 39(Suppliment 1), S295 (2006) Macdonald, A., Tabor, G., Winlove, C.P., Arkill, K., McHale, N.: Computational and experimental analysis of lymphatic valves. J. Biomech. 39(Suppliment 1), S295 (2006)
26.
go back to reference Macdonald, A., Tabor, G., Winlove, P., Arkill, K., McHale, N.: The fluid dynamics of lymphatic vessels. Poster presentation at Cardiovascular Haemodynamics and Modelling, 25th–27th September 2005, Edinburgh (2005) Macdonald, A., Tabor, G., Winlove, P., Arkill, K., McHale, N.: The fluid dynamics of lymphatic vessels. Poster presentation at Cardiovascular Haemodynamics and Modelling, 25th–27th September 2005, Edinburgh (2005)
27.
go back to reference Macdonald, A.J.: The fluid dynamics of lymphatic vessels. PhD thesis, University of Exeter (2007) Macdonald, A.J.: The fluid dynamics of lymphatic vessels. PhD thesis, University of Exeter (2007)
28.
go back to reference Macdonald, A.J., Arkill, K.P., Tabor, G.R., McHale, N.G., Winlove, C.P.: Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol. 295, H305–H313 (2008)CrossRef Macdonald, A.J., Arkill, K.P., Tabor, G.R., McHale, N.G., Winlove, C.P.: Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol. 295, H305–H313 (2008)CrossRef
29.
go back to reference Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817–835 (2005)CrossRef Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817–835 (2005)CrossRef
30.
go back to reference McHale, N.G., Roddie, I.C.: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261, 255–269 (1976) McHale, N.G., Roddie, I.C.: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261, 255–269 (1976)
31.
go back to reference Mendoza, E., Schmid-Schönbein, G.W.: A model for mechanics of primary lymphatic valves. J. Biomech. Eng. 125:407–414 (2003) Mendoza, E., Schmid-Schönbein, G.W.: A model for mechanics of primary lymphatic valves. J. Biomech. Eng. 125:407–414 (2003)
32.
go back to reference Mirski, H.P., Miller, M.J., Linderman, J.J., Kirschner, D.E.: Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J. Theor. Biol. 287, 160–170 (2011)CrossRef Mirski, H.P., Miller, M.J., Linderman, J.J., Kirschner, D.E.: Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J. Theor. Biol. 287, 160–170 (2011)CrossRef
33.
go back to reference Murray, C.D.: The physiological principle of minimum work: 1. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3), 207–214 (1926)CrossRef Murray, C.D.: The physiological principle of minimum work: 1. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3), 207–214 (1926)CrossRef
34.
go back to reference Quick, C.M., Ngo, B.L., Venugopal, A.M., Stewart, R.H.: Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. Am. J. Physiol. Heart Circ. Physiol. 296, H662–H668 (2009)CrossRef Quick, C.M., Ngo, B.L., Venugopal, A.M., Stewart, R.H.: Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. Am. J. Physiol. Heart Circ. Physiol. 296, H662–H668 (2009)CrossRef
35.
go back to reference Quick, C.M., Venugopal, A.M., Gashev, A.A., Zawieja, D.C., Stewart, R.H.: Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007)CrossRef Quick, C.M., Venugopal, A.M., Gashev, A.A., Zawieja, D.C., Stewart, R.H.: Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007)CrossRef
36.
go back to reference Rahbar, E., Moore, J.E.: A model of a radially expanding and contracting lymphangeon. J. Biomech. 44, 1001–1007 (2011)CrossRef Rahbar, E., Moore, J.E.: A model of a radially expanding and contracting lymphangeon. J. Biomech. 44, 1001–1007 (2011)CrossRef
37.
go back to reference Reddy, N.P., Krouskop, T.A., Newell, P.H.: Biomechanics of a lymphatic vessel. Blood Vessels 12, 261–278 (1975) Reddy, N.P., Krouskop, T.A., Newell, P.H.: Biomechanics of a lymphatic vessel. Blood Vessels 12, 261–278 (1975)
38.
go back to reference Reddy, N.P., Krouskop, T.A., Newell, P.H.: A computer model of the lymphatic system. Comp. Biol. Med. 7, 181–197 (1977)CrossRef Reddy, N.P., Krouskop, T.A., Newell, P.H.: A computer model of the lymphatic system. Comp. Biol. Med. 7, 181–197 (1977)CrossRef
39.
go back to reference Roose, T., Fowler, A.C.: Network development in biological gels: role in lymphatic vessel development. Bull. Math. Biol. 70(6), 1772–1789 (2008) Roose, T., Fowler, A.C.: Network development in biological gels: role in lymphatic vessel development. Bull. Math. Biol. 70(6), 1772–1789 (2008)
40.
go back to reference Roose, T., Swartz, M.A.: Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45, 107–115 (2012)CrossRef Roose, T., Swartz, M.A.: Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45, 107–115 (2012)CrossRef
41.
go back to reference Schmid-Schönbein, G.: The second valve system in lymphatics. Lymphat. Res. Biol. 1, 25–29 (2003)CrossRef Schmid-Schönbein, G.: The second valve system in lymphatics. Lymphat. Res. Biol. 1, 25–29 (2003)CrossRef
42.
go back to reference Schmid-Schönbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70(4), 987–1028 (1990) Schmid-Schönbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70(4), 987–1028 (1990)
43.
go back to reference Schmid-Schonbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1026 (1990) Schmid-Schonbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1026 (1990)
44.
go back to reference Sherwin, S.J., Franke, V., Peiró, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)MATHCrossRef Sherwin, S.J., Franke, V., Peiró, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)MATHCrossRef
45.
go back to reference Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine 10, 33 (2011)CrossRef Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine 10, 33 (2011)CrossRef
46.
go back to reference Shim, E.B., Kamm, R.D.: Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness. J. Fluids Struct. 16(8), 1009–1027 (2002)CrossRef Shim, E.B., Kamm, R.D.: Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness. J. Fluids Struct. 16(8), 1009–1027 (2002)CrossRef
47.
go back to reference Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., Detmar, M.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–198 (2001)CrossRef Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., Detmar, M.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–198 (2001)CrossRef
48.
go back to reference Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K.: Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002) Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K.: Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002)
49.
go back to reference Suga, H., Sagawa, K.: Mathematical interrelationship between instantaneous ventricular pressure–volume ratio and myocardial force–velocity relation. Ann. Biomed. Eng. 1, 160–181 (1972)CrossRef Suga, H., Sagawa, K.: Mathematical interrelationship between instantaneous ventricular pressure–volume ratio and myocardial force–velocity relation. Ann. Biomed. Eng. 1, 160–181 (1972)CrossRef
50.
go back to reference Suga, H., Sagawa, K.: Instantaneous pressure–volume relations and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)CrossRef Suga, H., Sagawa, K.: Instantaneous pressure–volume relations and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)CrossRef
51.
go back to reference Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)CrossRef Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)CrossRef
52.
go back to reference Swartz, M.A., Fleury, M.E.: The physiology of the lymph system. Ann. Rev. Biomed. Eng. 9, 229–256 (2007)CrossRef Swartz, M.A., Fleury, M.E.: The physiology of the lymph system. Ann. Rev. Biomed. Eng. 9, 229–256 (2007)CrossRef
53.
go back to reference Swartz, M.A., Kaipainen, A., Netti, P.A., Boucher, Y., Grodzinsky, A.J., Jain, R.K.: Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32, 1297–1307 (1999)CrossRef Swartz, M.A., Kaipainen, A., Netti, P.A., Boucher, Y., Grodzinsky, A.J., Jain, R.K.: Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32, 1297–1307 (1999)CrossRef
54.
go back to reference Trzewik, J., Mallipattu, S.K., Artmann, G.M., Delano, F.A., Schmid-Schönbein, G.W.: Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001) Trzewik, J., Mallipattu, S.K., Artmann, G.M., Delano, F.A., Schmid-Schönbein, G.W.: Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001)
55.
go back to reference Venugopal, A.M., Quick, C.M., Laine, G.A., Stewart, R.H.: Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296, H303–H309 (2009) Venugopal, A.M., Quick, C.M., Laine, G.A., Stewart, R.H.: Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296, H303–H309 (2009)
56.
go back to reference Venugopal, A.M., Stewart, R.H., Laine, G.A., Dongaonkar, R.M., Quick, C.M.: Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 293, H1183–H1189 (2007)CrossRef Venugopal, A.M., Stewart, R.H., Laine, G.A., Dongaonkar, R.M., Quick, C.M.: Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 293, H1183–H1189 (2007)CrossRef
57.
go back to reference Venugopal, A.M., Stewart, R.H., Laine, G.A., Quick, C.M.: Nonlinear lymphangion pressure–volume relationship minimizes edema. Am. J. Physiol. Heart Circ. Physiol. 299, H876–H882 (2010)CrossRef Venugopal, A.M., Stewart, R.H., Laine, G.A., Quick, C.M.: Nonlinear lymphangion pressure–volume relationship minimizes edema. Am. J. Physiol. Heart Circ. Physiol. 299, H876–H882 (2010)CrossRef
58.
go back to reference Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRef Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRef
59.
go back to reference Young, P.G., Beresford-West, T.B.H., Coward, S.R.L., Notarberardino, B., Walker, B., Abdul-Aziz, A.: An efficient approach to converting 3D image data into highly accurate computational models. Phil. Trans. R. Soc. A 366, 3155–3173 (2008)MathSciNetCrossRef Young, P.G., Beresford-West, T.B.H., Coward, S.R.L., Notarberardino, B., Walker, B., Abdul-Aziz, A.: An efficient approach to converting 3D image data into highly accurate computational models. Phil. Trans. R. Soc. A 366, 3155–3173 (2008)MathSciNetCrossRef
60.
go back to reference Zawieja, D.C.: Contractile physiology of lymphatics. Lymphat. Res. Biol. 7(2), 87–96 (2009)CrossRef Zawieja, D.C.: Contractile physiology of lymphatics. Lymphat. Res. Biol. 7(2), 87–96 (2009)CrossRef
61.
go back to reference Zweifach, B.W., Prather, J.W.: Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 288(5), 1326–1331 (1975) Zweifach, B.W., Prather, J.W.: Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 288(5), 1326–1331 (1975)
Metadata
Title
Multiscale Modelling of Lymphatic Drainage
Authors
Tiina Roose
Gavin Tabor
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_148