Skip to main content

2013 | OriginalPaper | Buchkapitel

Multiscale Modelling of Lymphatic Drainage

verfasst von : Tiina Roose, Gavin Tabor

Erschienen in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we will describe the latest developments in the area of lymphatic modelling. The lymphatic system is one of the key elements of the human circulation, serving the dual functions of draining interstitial fluid and returning this to the general blood circulation, together with processing this lymph fluid which is a key component of the body’s immune response system. Compared to the main cardiovascular system however, remarkably little modelling has been attempted. At the same time, the distribution of pumping activity (contractile lymphangions coupled with simple valves) throughout the system, passive primary lymphatics and complex lymph nodes combining to form an active network, makes the system a prime candidate for multiscale modelling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arkill, K.P., Moger, J., Winlove, C.P.: The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216, 547–555 (2010)CrossRef Arkill, K.P., Moger, J., Winlove, C.P.: The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy. J. Anat. 216, 547–555 (2010)CrossRef
2.
Zurück zum Zitat Baldazzi, V., Paci, P., Bernaschi, M., Castiglione, F.: Modelling lymphocyte homing and encounters in lymph nodes. BMC Bioinform. 10, 387–398 (2009)CrossRef Baldazzi, V., Paci, P., Bernaschi, M., Castiglione, F.: Modelling lymphocyte homing and encounters in lymph nodes. BMC Bioinform. 10, 387–398 (2009)CrossRef
3.
Zurück zum Zitat Bergel, D.H.: The static elastic properties of the arterial wall. J. Physiol. 156, 445–457 (1961) Bergel, D.H.: The static elastic properties of the arterial wall. J. Physiol. 156, 445–457 (1961)
4.
Zurück zum Zitat Berk, D.A., Swartz, M.A., Leu, A.J., Jain, R.K.: Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. Heart Circ. Physiol. 270, H330–H337 (1996) Berk, D.A., Swartz, M.A., Leu, A.J., Jain, R.K.: Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. Heart Circ. Physiol. 270, H330–H337 (1996)
5.
Zurück zum Zitat Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133, 011008-1–011008-10 (2011) Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133, 011008-1–011008-10 (2011)
6.
Zurück zum Zitat Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)CrossRef Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)CrossRef
7.
Zurück zum Zitat Cassella, M., Skobe, M.: Lymphatic vessel activation in cancer. Ann. N. Y. Acad. Sci. 979, 120–130 (2002)CrossRef Cassella, M., Skobe, M.: Lymphatic vessel activation in cancer. Ann. N. Y. Acad. Sci. 979, 120–130 (2002)CrossRef
8.
Zurück zum Zitat Collins, T.P., Tabor, G.R., Young, P.G.: A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829–836 (2007)CrossRef Collins, T.P., Tabor, G.R., Young, P.G.: A computational fluid dynamics study of inspiratory flow in orotracheal geometries. Med. Biol. Eng. Comput. 45(9), 829–836 (2007)CrossRef
9.
Zurück zum Zitat Drake, R.E., Allen, S.J., Katz, J., Gabel, J.C., Laine, G.A.: Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251, H1090–H1094 (1986) Drake, R.E., Allen, S.J., Katz, J., Gabel, J.C., Laine, G.A.: Equivalent circuit technique for lymph flow studies. Am. J. Physiol. Heart Circ. Physiol. 251, H1090–H1094 (1986)
10.
Zurück zum Zitat Friedman, A., Lolas, G.: Analysis of a mathematical model of tumor lymphangiogeneis. Math. Models Meth. Appl. Sci. 15, 95–107 (2005)MathSciNetMATHCrossRef Friedman, A., Lolas, G.: Analysis of a mathematical model of tumor lymphangiogeneis. Math. Models Meth. Appl. Sci. 15, 95–107 (2005)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Fung, Y.C.: Biomechanics: Circulation. 2nd edn. Springer, New York (1997)CrossRef Fung, Y.C.: Biomechanics: Circulation. 2nd edn. Springer, New York (1997)CrossRef
12.
Zurück zum Zitat Galie, P., Spilker, R.L.: A two-dimensional computational model of lymph transport across primary lymphatic valves. J. Biomech. Eng. 131, 1297–1307 (2009)CrossRef Galie, P., Spilker, R.L.: A two-dimensional computational model of lymph transport across primary lymphatic valves. J. Biomech. Eng. 131, 1297–1307 (2009)CrossRef
13.
Zurück zum Zitat Gnepp, D.R.: Lymphatics. In: Staub, N.C., Taylor, A.E. (eds) Edema, pp. 263–298. Raven Press, New York (1984) Gnepp, D.R.: Lymphatics. In: Staub, N.C., Taylor, A.E. (eds) Edema, pp. 263–298. Raven Press, New York (1984)
14.
Zurück zum Zitat Gnepp, D.R., Green, F.H.: Scanning electron microscopy of collecting lymphatic vessels and their comparison to arteries and veins. Scan. Electron Microsc. 3, 756–762 (1979) Gnepp, D.R., Green, F.H.: Scanning electron microscopy of collecting lymphatic vessels and their comparison to arteries and veins. Scan. Electron Microsc. 3, 756–762 (1979)
15.
Zurück zum Zitat Gnepp, D.R., Green, F.H.Y.: Scanning electron-microscopic study of canine lymphatic vessels. Lymphology 13(2), 91–99 (1980) Gnepp, D.R., Green, F.H.Y.: Scanning electron-microscopic study of canine lymphatic vessels. Lymphology 13(2), 91–99 (1980)
16.
Zurück zum Zitat Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Ann. Rev. Fluid Mech. 36, 121–147 (2004)MathSciNetCrossRef Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Ann. Rev. Fluid Mech. 36, 121–147 (2004)MathSciNetCrossRef
17.
Zurück zum Zitat Guo, Z., Sloot, P.M.A., Tay, J.C.: A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255, 163–175 (2008)MathSciNetCrossRef Guo, Z., Sloot, P.M.A., Tay, J.C.: A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255, 163–175 (2008)MathSciNetCrossRef
18.
Zurück zum Zitat Hajjami, H.M.-E., Petrova, T.V.: Developmental and pathological lymphangiogenesis: from models to human disease. Histochem. Cell Biol. 130, 1063–1078 (2008)CrossRef Hajjami, H.M.-E., Petrova, T.V.: Developmental and pathological lymphangiogenesis: from models to human disease. Histochem. Cell Biol. 130, 1063–1078 (2008)CrossRef
19.
Zurück zum Zitat Jain, R.K.: Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001)CrossRef Jain, R.K.: Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001)CrossRef
20.
Zurück zum Zitat Jussila, L., Alitalo, K.: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700 (2002) Jussila, L., Alitalo, K.: Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673–700 (2002)
21.
Zurück zum Zitat Lambert, M.W., Benoit, J.N.: Mathematical model of intestinal lymph flow and lymphatic pumping. FASEB J. 6(5), A2078 (1992) Lambert, M.W., Benoit, J.N.: Mathematical model of intestinal lymph flow and lymphatic pumping. FASEB J. 6(5), A2078 (1992)
22.
Zurück zum Zitat Lauweryns, J.M.: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves. Lymphology 4(4), 125–132 (1971) Lauweryns, J.M.: Stereomicroscopic funnel-like architecture of pulmonary lymphatic valves. Lymphology 4(4), 125–132 (1971)
23.
Zurück zum Zitat Leak, L.V.: Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc. Res. 2, 361–391 (1970)CrossRef Leak, L.V.: Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc. Res. 2, 361–391 (1970)CrossRef
24.
Zurück zum Zitat Li, B., Silver, I., Szalai, J. P., Johnson, M. G.: Pressure–volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc. Res. 56, 127–138 (1998)CrossRef Li, B., Silver, I., Szalai, J. P., Johnson, M. G.: Pressure–volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia. Microvasc. Res. 56, 127–138 (1998)CrossRef
25.
Zurück zum Zitat Macdonald, A., Tabor, G., Winlove, C.P., Arkill, K., McHale, N.: Computational and experimental analysis of lymphatic valves. J. Biomech. 39(Suppliment 1), S295 (2006) Macdonald, A., Tabor, G., Winlove, C.P., Arkill, K., McHale, N.: Computational and experimental analysis of lymphatic valves. J. Biomech. 39(Suppliment 1), S295 (2006)
26.
Zurück zum Zitat Macdonald, A., Tabor, G., Winlove, P., Arkill, K., McHale, N.: The fluid dynamics of lymphatic vessels. Poster presentation at Cardiovascular Haemodynamics and Modelling, 25th–27th September 2005, Edinburgh (2005) Macdonald, A., Tabor, G., Winlove, P., Arkill, K., McHale, N.: The fluid dynamics of lymphatic vessels. Poster presentation at Cardiovascular Haemodynamics and Modelling, 25th–27th September 2005, Edinburgh (2005)
27.
Zurück zum Zitat Macdonald, A.J.: The fluid dynamics of lymphatic vessels. PhD thesis, University of Exeter (2007) Macdonald, A.J.: The fluid dynamics of lymphatic vessels. PhD thesis, University of Exeter (2007)
28.
Zurück zum Zitat Macdonald, A.J., Arkill, K.P., Tabor, G.R., McHale, N.G., Winlove, C.P.: Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol. 295, H305–H313 (2008)CrossRef Macdonald, A.J., Arkill, K.P., Tabor, G.R., McHale, N.G., Winlove, C.P.: Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am. J. Physiol. Heart Circ. Physiol. 295, H305–H313 (2008)CrossRef
29.
Zurück zum Zitat Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817–835 (2005)CrossRef Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817–835 (2005)CrossRef
30.
Zurück zum Zitat McHale, N.G., Roddie, I.C.: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261, 255–269 (1976) McHale, N.G., Roddie, I.C.: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261, 255–269 (1976)
31.
Zurück zum Zitat Mendoza, E., Schmid-Schönbein, G.W.: A model for mechanics of primary lymphatic valves. J. Biomech. Eng. 125:407–414 (2003) Mendoza, E., Schmid-Schönbein, G.W.: A model for mechanics of primary lymphatic valves. J. Biomech. Eng. 125:407–414 (2003)
32.
Zurück zum Zitat Mirski, H.P., Miller, M.J., Linderman, J.J., Kirschner, D.E.: Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J. Theor. Biol. 287, 160–170 (2011)CrossRef Mirski, H.P., Miller, M.J., Linderman, J.J., Kirschner, D.E.: Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J. Theor. Biol. 287, 160–170 (2011)CrossRef
33.
Zurück zum Zitat Murray, C.D.: The physiological principle of minimum work: 1. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3), 207–214 (1926)CrossRef Murray, C.D.: The physiological principle of minimum work: 1. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3), 207–214 (1926)CrossRef
34.
Zurück zum Zitat Quick, C.M., Ngo, B.L., Venugopal, A.M., Stewart, R.H.: Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. Am. J. Physiol. Heart Circ. Physiol. 296, H662–H668 (2009)CrossRef Quick, C.M., Ngo, B.L., Venugopal, A.M., Stewart, R.H.: Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. Am. J. Physiol. Heart Circ. Physiol. 296, H662–H668 (2009)CrossRef
35.
Zurück zum Zitat Quick, C.M., Venugopal, A.M., Gashev, A.A., Zawieja, D.C., Stewart, R.H.: Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007)CrossRef Quick, C.M., Venugopal, A.M., Gashev, A.A., Zawieja, D.C., Stewart, R.H.: Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007)CrossRef
36.
Zurück zum Zitat Rahbar, E., Moore, J.E.: A model of a radially expanding and contracting lymphangeon. J. Biomech. 44, 1001–1007 (2011)CrossRef Rahbar, E., Moore, J.E.: A model of a radially expanding and contracting lymphangeon. J. Biomech. 44, 1001–1007 (2011)CrossRef
37.
Zurück zum Zitat Reddy, N.P., Krouskop, T.A., Newell, P.H.: Biomechanics of a lymphatic vessel. Blood Vessels 12, 261–278 (1975) Reddy, N.P., Krouskop, T.A., Newell, P.H.: Biomechanics of a lymphatic vessel. Blood Vessels 12, 261–278 (1975)
38.
Zurück zum Zitat Reddy, N.P., Krouskop, T.A., Newell, P.H.: A computer model of the lymphatic system. Comp. Biol. Med. 7, 181–197 (1977)CrossRef Reddy, N.P., Krouskop, T.A., Newell, P.H.: A computer model of the lymphatic system. Comp. Biol. Med. 7, 181–197 (1977)CrossRef
39.
Zurück zum Zitat Roose, T., Fowler, A.C.: Network development in biological gels: role in lymphatic vessel development. Bull. Math. Biol. 70(6), 1772–1789 (2008) Roose, T., Fowler, A.C.: Network development in biological gels: role in lymphatic vessel development. Bull. Math. Biol. 70(6), 1772–1789 (2008)
40.
Zurück zum Zitat Roose, T., Swartz, M.A.: Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45, 107–115 (2012)CrossRef Roose, T., Swartz, M.A.: Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45, 107–115 (2012)CrossRef
41.
Zurück zum Zitat Schmid-Schönbein, G.: The second valve system in lymphatics. Lymphat. Res. Biol. 1, 25–29 (2003)CrossRef Schmid-Schönbein, G.: The second valve system in lymphatics. Lymphat. Res. Biol. 1, 25–29 (2003)CrossRef
42.
Zurück zum Zitat Schmid-Schönbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70(4), 987–1028 (1990) Schmid-Schönbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70(4), 987–1028 (1990)
43.
Zurück zum Zitat Schmid-Schonbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1026 (1990) Schmid-Schonbein, G.W.: Microlymphatics and lymph flow. Physiol. Rev. 70, 987–1026 (1990)
44.
Zurück zum Zitat Sherwin, S.J., Franke, V., Peiró, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)MATHCrossRef Sherwin, S.J., Franke, V., Peiró, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)MATHCrossRef
45.
Zurück zum Zitat Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine 10, 33 (2011)CrossRef Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine 10, 33 (2011)CrossRef
46.
Zurück zum Zitat Shim, E.B., Kamm, R.D.: Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness. J. Fluids Struct. 16(8), 1009–1027 (2002)CrossRef Shim, E.B., Kamm, R.D.: Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness. J. Fluids Struct. 16(8), 1009–1027 (2002)CrossRef
47.
Zurück zum Zitat Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., Detmar, M.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–198 (2001)CrossRef Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., Detmar, M.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–198 (2001)CrossRef
48.
Zurück zum Zitat Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K.: Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002) Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E., Alitalo, K.: Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002)
49.
Zurück zum Zitat Suga, H., Sagawa, K.: Mathematical interrelationship between instantaneous ventricular pressure–volume ratio and myocardial force–velocity relation. Ann. Biomed. Eng. 1, 160–181 (1972)CrossRef Suga, H., Sagawa, K.: Mathematical interrelationship between instantaneous ventricular pressure–volume ratio and myocardial force–velocity relation. Ann. Biomed. Eng. 1, 160–181 (1972)CrossRef
50.
Zurück zum Zitat Suga, H., Sagawa, K.: Instantaneous pressure–volume relations and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)CrossRef Suga, H., Sagawa, K.: Instantaneous pressure–volume relations and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)CrossRef
51.
Zurück zum Zitat Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)CrossRef Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)CrossRef
52.
Zurück zum Zitat Swartz, M.A., Fleury, M.E.: The physiology of the lymph system. Ann. Rev. Biomed. Eng. 9, 229–256 (2007)CrossRef Swartz, M.A., Fleury, M.E.: The physiology of the lymph system. Ann. Rev. Biomed. Eng. 9, 229–256 (2007)CrossRef
53.
Zurück zum Zitat Swartz, M.A., Kaipainen, A., Netti, P.A., Boucher, Y., Grodzinsky, A.J., Jain, R.K.: Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32, 1297–1307 (1999)CrossRef Swartz, M.A., Kaipainen, A., Netti, P.A., Boucher, Y., Grodzinsky, A.J., Jain, R.K.: Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32, 1297–1307 (1999)CrossRef
54.
Zurück zum Zitat Trzewik, J., Mallipattu, S.K., Artmann, G.M., Delano, F.A., Schmid-Schönbein, G.W.: Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001) Trzewik, J., Mallipattu, S.K., Artmann, G.M., Delano, F.A., Schmid-Schönbein, G.W.: Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001)
55.
Zurück zum Zitat Venugopal, A.M., Quick, C.M., Laine, G.A., Stewart, R.H.: Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296, H303–H309 (2009) Venugopal, A.M., Quick, C.M., Laine, G.A., Stewart, R.H.: Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296, H303–H309 (2009)
56.
Zurück zum Zitat Venugopal, A.M., Stewart, R.H., Laine, G.A., Dongaonkar, R.M., Quick, C.M.: Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 293, H1183–H1189 (2007)CrossRef Venugopal, A.M., Stewart, R.H., Laine, G.A., Dongaonkar, R.M., Quick, C.M.: Lymphangion coordination minimally affects mean flow in lymphatic vessels. Am. J. Physiol. Heart Circ. Physiol. 293, H1183–H1189 (2007)CrossRef
57.
Zurück zum Zitat Venugopal, A.M., Stewart, R.H., Laine, G.A., Quick, C.M.: Nonlinear lymphangion pressure–volume relationship minimizes edema. Am. J. Physiol. Heart Circ. Physiol. 299, H876–H882 (2010)CrossRef Venugopal, A.M., Stewart, R.H., Laine, G.A., Quick, C.M.: Nonlinear lymphangion pressure–volume relationship minimizes edema. Am. J. Physiol. Heart Circ. Physiol. 299, H876–H882 (2010)CrossRef
58.
Zurück zum Zitat Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRef Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRef
59.
Zurück zum Zitat Young, P.G., Beresford-West, T.B.H., Coward, S.R.L., Notarberardino, B., Walker, B., Abdul-Aziz, A.: An efficient approach to converting 3D image data into highly accurate computational models. Phil. Trans. R. Soc. A 366, 3155–3173 (2008)MathSciNetCrossRef Young, P.G., Beresford-West, T.B.H., Coward, S.R.L., Notarberardino, B., Walker, B., Abdul-Aziz, A.: An efficient approach to converting 3D image data into highly accurate computational models. Phil. Trans. R. Soc. A 366, 3155–3173 (2008)MathSciNetCrossRef
60.
Zurück zum Zitat Zawieja, D.C.: Contractile physiology of lymphatics. Lymphat. Res. Biol. 7(2), 87–96 (2009)CrossRef Zawieja, D.C.: Contractile physiology of lymphatics. Lymphat. Res. Biol. 7(2), 87–96 (2009)CrossRef
61.
Zurück zum Zitat Zweifach, B.W., Prather, J.W.: Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 288(5), 1326–1331 (1975) Zweifach, B.W., Prather, J.W.: Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 288(5), 1326–1331 (1975)
Metadaten
Titel
Multiscale Modelling of Lymphatic Drainage
verfasst von
Tiina Roose
Gavin Tabor
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_148

Neuer Inhalt