Skip to main content
Top
Published in: Wireless Networks 2/2021

02-01-2021

Multistage fuzzy logic congestion-aware routing using dual-stage notification and the relative barring distance in wireless sensor networks

Authors: Phet Aimtongkham, Paramate Horkaew, Chakchai So-In

Published in: Wireless Networks | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Congestion management in a wireless sensor network (WSN) is a key determinant of the quality of service. Congestion in a network causes data loss, a reduced transmission rate, increased delays, and excess energy consumption. The latter has a direct impact on tiny sensor devices with limited resources and processing, buffering, and transmitting capabilities. In addition, a WSN relies on multiple packet relays between nodes, which inevitably results in network congestion near the base station, whose neighboring nodes incur crowded traffic from multisource deliveries. Thus, this paper proposes a novel routing method that minimizes congestion. The adaptive routing strategy consists of 3 main modules. First, an optimal notification level for queue control is specified by using multistage fuzzy logic (MFL). The resulting weights evaluated from congestion-related parameters are then passed onto the subsequent modules. The second module adjusts the congestion notification, which makes the module more flexible to improve its routing discovery efficiency and to reduce the chance of loss during the rerouting stage. Finally, we propose a routing adjustment and control mechanism by using a novel navigation technique based on linear and angular distances and MFL to create weights for path assessment. Simulation results demonstrate that the proposed method outperforms the state-of-the-art methods in terms of the packet loss ratio, average hop count, network lifetime, and energy consumption metrics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference International Telecommunication Union. (2016). Harnessing the Internet of Things for global development. Geneva. International Telecommunication Union. (2016). Harnessing the Internet of Things for global development. Geneva.
4.
go back to reference Lopez, J., Rios, R., Bao, F., & Wang, G. (2017). Evolving privacy: From sensors to the Internet of Things. Future Generation Computing Systems, 75, 46–57.CrossRef Lopez, J., Rios, R., Bao, F., & Wang, G. (2017). Evolving privacy: From sensors to the Internet of Things. Future Generation Computing Systems, 75, 46–57.CrossRef
5.
go back to reference Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials, 19(2), 828–854.CrossRef Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials, 19(2), 828–854.CrossRef
6.
go back to reference Pham, Q. V., & Hwang, W. J. (2017). Network utility maximization-based congestion control over wireless networks: a survey and potential directives. IEEE Communications Surveys and Tutorials, 19(2), 1173–1200.CrossRef Pham, Q. V., & Hwang, W. J. (2017). Network utility maximization-based congestion control over wireless networks: a survey and potential directives. IEEE Communications Surveys and Tutorials, 19(2), 1173–1200.CrossRef
7.
go back to reference Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef
8.
go back to reference Modieginyane, K. M., Letswamotse, B. B., Malekian, R., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering, 66, 274–287.CrossRef Modieginyane, K. M., Letswamotse, B. B., Malekian, R., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering, 66, 274–287.CrossRef
9.
go back to reference Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks Journal, 67, 104–122.CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks Journal, 67, 104–122.CrossRef
10.
go back to reference Jan, M. A., Jan, S. R. U., Alam, M., Akhunzada, A., & Rahman, I. U. (2018). A comprehensive analysis of congestion control protocols in wireless sensor networks. Mobile Networks and Applications, 23(3), 456–468.CrossRef Jan, M. A., Jan, S. R. U., Alam, M., Akhunzada, A., & Rahman, I. U. (2018). A comprehensive analysis of congestion control protocols in wireless sensor networks. Mobile Networks and Applications, 23(3), 456–468.CrossRef
11.
go back to reference Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef
12.
go back to reference Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.CrossRef Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.CrossRef
13.
go back to reference Shah, S. A., Nazir, B., & Khan, I. A. (2017). Congestion control algorithms in wireless sensor networks: Trends and opportunities. Journal of King Saud University, 29(3), 236–245. Shah, S. A., Nazir, B., & Khan, I. A. (2017). Congestion control algorithms in wireless sensor networks: Trends and opportunities. Journal of King Saud University, 29(3), 236–245.
14.
go back to reference Al-Saadi, R., Armitage, G., But, J., & Branch, P. (2019). A survey of delay-based and hybrid TCP congestion control algorithms. IEEE Communications Surveys and Tutorials, 21(4), 3609–3638.CrossRef Al-Saadi, R., Armitage, G., But, J., & Branch, P. (2019). A survey of delay-based and hybrid TCP congestion control algorithms. IEEE Communications Surveys and Tutorials, 21(4), 3609–3638.CrossRef
15.
go back to reference Xu, C., Zhao, J., & Muntean, G. M. (2016). Congestion control design for multipath transport protocols: A survey. IEEE Communications Surveys and Tutorials, 18(4), 2948–2969.CrossRef Xu, C., Zhao, J., & Muntean, G. M. (2016). Congestion control design for multipath transport protocols: A survey. IEEE Communications Surveys and Tutorials, 18(4), 2948–2969.CrossRef
16.
go back to reference Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(4), 1839–1859.CrossRef Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(4), 1839–1859.CrossRef
17.
go back to reference Bohloulzadeh, A., & Rajaei, M. (2020). A survey on congestion control protocols in wireless sensor networks. International Journal of Wireless Information Networks, 27(3), 365–384.CrossRef Bohloulzadeh, A., & Rajaei, M. (2020). A survey on congestion control protocols in wireless sensor networks. International Journal of Wireless Information Networks, 27(3), 365–384.CrossRef
18.
go back to reference Gherbi, C., Aliouat, Z., & Benmohammed, M. (2017). A survey on clustering routing protocols in wireless sensor networks. Sensor Review, 37(1), 12–25.CrossRef Gherbi, C., Aliouat, Z., & Benmohammed, M. (2017). A survey on clustering routing protocols in wireless sensor networks. Sensor Review, 37(1), 12–25.CrossRef
19.
go back to reference Pratama, A., Munadi, R., & Mayasari, R. (2018). Design and implementation of flood detector using wireless sensor network with mamdani’s fuzzy logic method. In Proceedings—2017 2nd international conferences on information technology, information systems and electrical engineering, ICITISEE 2017 (vol. 2018-January, pp. 192–197). Pratama, A., Munadi, R., & Mayasari, R. (2018). Design and implementation of flood detector using wireless sensor network with mamdani’s fuzzy logic method. In Proceedings2017 2nd international conferences on information technology, information systems and electrical engineering, ICITISEE 2017 (vol. 2018-January, pp. 192–197).
20.
go back to reference Aguirre, E., Lopez-Iturri, P., Azpilicueta, L., Astrain, J. J., Villadangos, J., Santesteban, D., & Falcone, F. (2016). Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios. Sensors, 16(9), 1–20.CrossRef Aguirre, E., Lopez-Iturri, P., Azpilicueta, L., Astrain, J. J., Villadangos, J., Santesteban, D., & Falcone, F. (2016). Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios. Sensors, 16(9), 1–20.CrossRef
21.
go back to reference Yu, F., He, Z., & Xu, N. (2019). Autonomous navigation for GPS using inter-satellite ranging and relative direction measurements. Acta Astronautica, 160, 646–655.CrossRef Yu, F., He, Z., & Xu, N. (2019). Autonomous navigation for GPS using inter-satellite ranging and relative direction measurements. Acta Astronautica, 160, 646–655.CrossRef
22.
go back to reference Stegagno, P., Cognetti, M., Oriolo, G., Bulthoff, H. H., & Franchi, A. (2016). Ground and Aerial mutual localization using anonymous relative-bearing measurements. IEEE Transactions on Robotics, 32(5), 1133–1151.CrossRef Stegagno, P., Cognetti, M., Oriolo, G., Bulthoff, H. H., & Franchi, A. (2016). Ground and Aerial mutual localization using anonymous relative-bearing measurements. IEEE Transactions on Robotics, 32(5), 1133–1151.CrossRef
23.
go back to reference Ren, F., He, T., Das, S. K., & Lin, C. (2011). Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1585–1599.CrossRef Ren, F., He, T., Das, S. K., & Lin, C. (2011). Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1585–1599.CrossRef
24.
go back to reference Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In SenSys’03: Proceedings of international conference on embedded network sensor systems (pp. 14–27). Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In SenSys’03: Proceedings of international conference on embedded network sensor systems (pp. 14–27).
25.
go back to reference Tan, D. D., Dinh, N. Q., & Kim, D. S. (2013). GRATA: Gradient-based traffic-aware routing for wireless sensor networks. IET Wireless Sensor Systems, 3(2), 104–111.CrossRef Tan, D. D., Dinh, N. Q., & Kim, D. S. (2013). GRATA: Gradient-based traffic-aware routing for wireless sensor networks. IET Wireless Sensor Systems, 3(2), 104–111.CrossRef
26.
go back to reference Gholipour, M., Haghighat, A. T., & Meybodi, M. R. (2015). Hop-by-hop traffic-aware routing to congestion control in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 15.CrossRef Gholipour, M., Haghighat, A. T., & Meybodi, M. R. (2015). Hop-by-hop traffic-aware routing to congestion control in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 15.CrossRef
27.
go back to reference Farzaneh, N., & Yaghmaee, M. H. (2015). An adaptive competitive resource control protocol for alleviating congestion in wireless sensor networks: An evolutionary game theory approach. Wireless Personal Communications, 82(1), 123–142.CrossRef Farzaneh, N., & Yaghmaee, M. H. (2015). An adaptive competitive resource control protocol for alleviating congestion in wireless sensor networks: An evolutionary game theory approach. Wireless Personal Communications, 82(1), 123–142.CrossRef
28.
go back to reference Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks, 22(3), 915–925.CrossRef Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks, 22(3), 915–925.CrossRef
29.
go back to reference Tang, L., Liu, H., & Yan, J. (2017). Gravitation theory based routing algorithm for active wireless sensor networks. Wireless Personal Communications, 97(1), 269–280.CrossRef Tang, L., Liu, H., & Yan, J. (2017). Gravitation theory based routing algorithm for active wireless sensor networks. Wireless Personal Communications, 97(1), 269–280.CrossRef
30.
go back to reference Raman, C. J., & James, V. (2019). FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm. Cluster Computing, 22, 12701–12711.CrossRef Raman, C. J., & James, V. (2019). FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm. Cluster Computing, 22, 12701–12711.CrossRef
31.
go back to reference Izadi, D., Abawajy, J., & Ghanavati, S. (2013). Fuzzy logic optimized wireless sensor network routing protocol. Journal of High Speed Networks, 19(2), 115–128.CrossRef Izadi, D., Abawajy, J., & Ghanavati, S. (2013). Fuzzy logic optimized wireless sensor network routing protocol. Journal of High Speed Networks, 19(2), 115–128.CrossRef
32.
go back to reference Hatamian, M., Bardmily, M. A., Asadboland, M., Hatamian, M., & Barati, H. (2016). Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering, 25(1), 114–123.CrossRef Hatamian, M., Bardmily, M. A., Asadboland, M., Hatamian, M., & Barati, H. (2016). Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering, 25(1), 114–123.CrossRef
33.
go back to reference Sangeetha, G., Vijayalakshmi, M., Ganapathy, S., & Kannan, A. (2020). An improved congestion-aware routing mechanism in sensor networks using fuzzy rule sets. Peer-to-Peer Networking and Applications, 13(3), 890–904.CrossRef Sangeetha, G., Vijayalakshmi, M., Ganapathy, S., & Kannan, A. (2020). An improved congestion-aware routing mechanism in sensor networks using fuzzy rule sets. Peer-to-Peer Networking and Applications, 13(3), 890–904.CrossRef
34.
go back to reference Chen, F., Wang, N., German, R., & Dressler, F. (2010). Simulation study of IEEE 802.15.4 LR-WPAN for industrial applications. Wireless Communications and Mobile Computing, 10(5), 609–621. Chen, F., Wang, N., German, R., & Dressler, F. (2010). Simulation study of IEEE 802.15.4 LR-WPAN for industrial applications. Wireless Communications and Mobile Computing, 10(5), 609–621.
35.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
36.
go back to reference Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Network, 22(2), 647–653.CrossRef Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Network, 22(2), 647–653.CrossRef
37.
go back to reference Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRef Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRef
38.
go back to reference Hosseini, S. S., & Noorossana, R. (2018). Performance evaluation of EWMA and CUSUM control charts to detect anomalies in social networks using average and standard deviation of degree measures. Quality and Reliability Engineering International, 34(4), 477–500.CrossRef Hosseini, S. S., & Noorossana, R. (2018). Performance evaluation of EWMA and CUSUM control charts to detect anomalies in social networks using average and standard deviation of degree measures. Quality and Reliability Engineering International, 34(4), 477–500.CrossRef
39.
go back to reference Tang, A., Castagliola, P., Sun, J. S., & Hu, X. L. (2018). The effect of measurement errors on the adaptive EWMA chart. Quality and Reliability Engineering International, 34(4), 609–630.CrossRef Tang, A., Castagliola, P., Sun, J. S., & Hu, X. L. (2018). The effect of measurement errors on the adaptive EWMA chart. Quality and Reliability Engineering International, 34(4), 609–630.CrossRef
40.
go back to reference Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., & Hubaux, J. P. (2006). MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 4026, pp. 480–497). LNCS. Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., & Hubaux, J. P. (2006). MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 4026, pp. 480–497). LNCS.
41.
go back to reference Kim, Y. H., Ahn, S. C., & Kwon, W. H. (2000). Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets and Systems, 111(2), 215–224.MathSciNetCrossRef Kim, Y. H., Ahn, S. C., & Kwon, W. H. (2000). Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets and Systems, 111(2), 215–224.MathSciNetCrossRef
44.
go back to reference Eaton, J. W., Bateman, D., & Hauberg, S. (1997). Gnu octave. London: Network Theory. Eaton, J. W., Bateman, D., & Hauberg, S. (1997). Gnu octave. London: Network Theory.
46.
go back to reference Naeve, M., et al. (2002). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8), 70–77.CrossRef Naeve, M., et al. (2002). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8), 70–77.CrossRef
Metadata
Title
Multistage fuzzy logic congestion-aware routing using dual-stage notification and the relative barring distance in wireless sensor networks
Authors
Phet Aimtongkham
Paramate Horkaew
Chakchai So-In
Publication date
02-01-2021
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2021
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02513-x

Other articles of this Issue 2/2021

Wireless Networks 2/2021 Go to the issue