Skip to main content
Top
Published in: Cellulose 5/2016

09-08-2016 | Original Paper

Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation

Authors: R. H. Fitri Faradilla, George Lee, Aditya Rawal, Try Hutomo, Martina H. Stenzel, Jayashree Arcot

Published in: Cellulose | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many tonnes of agricultural wastes are generated annually, which contains a relatively high amount of cellulose; banana pseudo-stem is one waste type that is a promising material for nanocellulose production. This research characterised nanocellulose from inner and outer layers of banana pseudo-stem as a preliminary research strategy for designing biodegradable packaging material from banana pseudo-stem nanocellulose. Nanocellulose was successfully prepared through TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl)-mediated oxidation. The extracted nanocellulose from both the inner and outer layers had observed widths of approximately 7–35 nm and long fibrillated fibre. They had high negative zeta potential (lower than −33.6) that provided good colloidal stability. The purity of the nanocellulose was high as demonstrated by 13C solid-state NMR and Fourier transform infrared spectroscopy. Nanocellulose from both layers was significantly more crystalline than the raw materials. Thermal stability of nanocellulose sourced from inner and outer layers was relatively similar, with degradation temperature of approximately 220 °C, which was slightly lower than the degradation temperature of its native form (232 °C for inner layer and 261 °C for outer layer).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Arifuzzaman Khan G, Shams A, Kabir MR, Gafur M, Terano M, Alam M (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci 128:1020–1029CrossRef Arifuzzaman Khan G, Shams A, Kabir MR, Gafur M, Terano M, Alam M (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci 128:1020–1029CrossRef
go back to reference Aziz NAA, Ho LH, Azahari B, Bhat R, Cheng LH (2011) Chemical and functional properties of the native banana (Musa acuminata × balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem 128:748–753CrossRef Aziz NAA, Ho LH, Azahari B, Bhat R, Cheng LH (2011) Chemical and functional properties of the native banana (Musa acuminata × balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem 128:748–753CrossRef
go back to reference Bardet M, Foray MF, Trân Q-K (2002) High-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem 74:4386–4390CrossRef Bardet M, Foray MF, Trân Q-K (2002) High-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem 74:4386–4390CrossRef
go back to reference Carlsson DO, Lindh J, Strømme M, Mihranyan A (2015) Susceptibility of Iα-and Iβ-dominated cellulose to TEMPO-mediated oxidation. Biomacromolecules 16:1643–1649CrossRef Carlsson DO, Lindh J, Strømme M, Mihranyan A (2015) Susceptibility of Iα-and Iβ-dominated cellulose to TEMPO-mediated oxidation. Biomacromolecules 16:1643–1649CrossRef
go back to reference Cordeiro N, Mendon C, Pothan LA, Varma A (2012) Monitoring surface properties evolution of thermochemically modified cellulose nanofibers from banana pseudo-stem. Carbohydr Polym 88:125–131CrossRef Cordeiro N, Mendon C, Pothan LA, Varma A (2012) Monitoring surface properties evolution of thermochemically modified cellulose nanofibers from banana pseudo-stem. Carbohydr Polym 88:125–131CrossRef
go back to reference Dai L, Long Z, Lv Y, Zhang D, Deng HB, Liu Q (2015) TEMPO-mediated oxidation of cellulose in carbonate buffer solution. Fibers Polym 16:319–325CrossRef Dai L, Long Z, Lv Y, Zhang D, Deng HB, Liu Q (2015) TEMPO-mediated oxidation of cellulose in carbonate buffer solution. Fibers Polym 16:319–325CrossRef
go back to reference Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997CrossRef Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997CrossRef
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
go back to reference Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRef
go back to reference Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef
go back to reference Hatcher PG (1987) Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance. Org Geochem 11:31–39CrossRef Hatcher PG (1987) Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance. Org Geochem 11:31–39CrossRef
go back to reference Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRef Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRef
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef
go back to reference Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40CrossRef Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40CrossRef
go back to reference Li K, Fu S, Zhan H, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of banana psudo-stem. BioResources 5:576–585 Li K, Fu S, Zhan H, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of banana psudo-stem. BioResources 5:576–585
go back to reference Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508CrossRef Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508CrossRef
go back to reference Lu C, Chen SY, Zheng Y, Zheng WL, Xiang C, Wang HP (2014) TEMPO-mediated oxidation of bacterial cellulose in buffer solution. In: Materials science forum. Trans Tech Publ, pp 90–94 Lu C, Chen SY, Zheng Y, Zheng WL, Xiang C, Wang HP (2014) TEMPO-mediated oxidation of bacterial cellulose in buffer solution. In: Materials science forum. Trans Tech Publ, pp 90–94
go back to reference Monspart-S´enyi J (2012) Fruit processing waste management. In: Sinha NK, Sidhu JS, Barta JSBW, Cano MP (eds) Handbook of fruits and fruit processing. Wiley, NewYork, pp 315–331CrossRef Monspart-S´enyi J (2012) Fruit processing waste management. In: Sinha NK, Sidhu JS, Barta JSBW, Cano MP (eds) Handbook of fruits and fruit processing. Wiley, NewYork, pp 315–331CrossRef
go back to reference Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants RSC. Advances 4:907–915. doi:10.1039/C3RA46390G Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants RSC. Advances 4:907–915. doi:10.​1039/​C3RA46390G
go back to reference Padam BS, Tin HS, Chye FY, Abdullah MI (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51(12):3527–3545CrossRef Padam BS, Tin HS, Chye FY, Abdullah MI (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51(12):3527–3545CrossRef
go back to reference Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef
go back to reference Pereira ALS, do Nascimento DM, Morais JPS, Vasconcelos NF, Feitosa JP, Brígida AIS, Rosa MDF (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRef Pereira ALS, do Nascimento DM, Morais JPS, Vasconcelos NF, Feitosa JP, Brígida AIS, Rosa MDF (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172CrossRef
go back to reference Phanthong P, Guan G, Ma Y, Hao X, Abudula A (2016) Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. J Taiwan Inst Chem Eng 60:617–622CrossRef Phanthong P, Guan G, Ma Y, Hao X, Abudula A (2016) Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. J Taiwan Inst Chem Eng 60:617–622CrossRef
go back to reference Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369CrossRef Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369CrossRef
go back to reference Ryu S-R, Lee D-J (2001) Effects of fiber aspect ratio, fiber content, and bonding agent on tensile and tear properties of short-fiber reinforced rubber. KSME Int J 15:35–43 Ryu S-R, Lee D-J (2001) Effects of fiber aspect ratio, fiber content, and bonding agent on tensile and tear properties of short-fiber reinforced rubber. KSME Int J 15:35–43
go back to reference Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
go back to reference Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef
go back to reference Santhanam V, Chandrasekaran M, Venkateshwaran N (2013) Model I fracture toughness of banana fiber and glass fiber reinforced composites. Adv Mater Res 622–623:1320–1324 Santhanam V, Chandrasekaran M, Venkateshwaran N (2013) Model I fracture toughness of banana fiber and glass fiber reinforced composites. Adv Mater Res 622–623:1320–1324
go back to reference Sharma PR, Varma AJ (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydr Polym 114:339–343CrossRef Sharma PR, Varma AJ (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohydr Polym 114:339–343CrossRef
go back to reference Shatkin JA, Wegner TH, Bilek ET, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products-part 1: applications. TAPPI J 13(5):9–16 Shatkin JA, Wegner TH, Bilek ET, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products-part 1: applications. TAPPI J 13(5):9–16
go back to reference Silva L, Panzera T, Velloso V, Rubio J, Christoforo A, Scarpa F (2013) Statistical design of polymeric composites reinforced with banana fibres and silica microparticles. J Compos Mater 47:1199–1210CrossRef Silva L, Panzera T, Velloso V, Rubio J, Christoforo A, Scarpa F (2013) Statistical design of polymeric composites reinforced with banana fibres and silica microparticles. J Compos Mater 47:1199–1210CrossRef
go back to reference Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci Technol 59:1311–1318CrossRef Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci Technol 59:1311–1318CrossRef
go back to reference Tkacheva N, Morozov S, Grigor’ev I, Mognonov D, Kolchanov N (2013) Modification of cellulose as a promising direction in the design of new materials. Polym Sci Ser B 55:409–429CrossRef Tkacheva N, Morozov S, Grigor’ev I, Mognonov D, Kolchanov N (2013) Modification of cellulose as a promising direction in the design of new materials. Polym Sci Ser B 55:409–429CrossRef
go back to reference Velásquez-Cock J, Castro C, Gañán P, Osorio M, Putaux JL, Serpa A, Zuluaga R (2016) Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v valery. Ind Crops Prod 83:551–560. doi:10.1016/j.indcrop.2015.12.070 CrossRef Velásquez-Cock J, Castro C, Gañán P, Osorio M, Putaux JL, Serpa A, Zuluaga R (2016) Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v valery. Ind Crops Prod 83:551–560. doi:10.​1016/​j.​indcrop.​2015.​12.​070 CrossRef
go back to reference Vieira JG et al (2012) Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polímeros 22:80–87CrossRef Vieira JG et al (2012) Synthesis and characterization of methylcellulose from cellulose extracted from mango seeds for use as a mortar additive. Polímeros 22:80–87CrossRef
go back to reference Vigneswaran C, Pavithra V, Gayathri V, Mythili K (2015) Banana fiber: scope and value added product development. J Text Appar Technol Manag 9(2):1–7 Vigneswaran C, Pavithra V, Gayathri V, Mythili K (2015) Banana fiber: scope and value added product development. J Text Appar Technol Manag 9(2):1–7
go back to reference Walton D (1968) Natural polymers as film formers A. Cellulose for film manufacture. In: The science and technology of polymer films, Wiley, New York, pp 85–114 Walton D (1968) Natural polymers as film formers A. Cellulose for film manufacture. In: The science and technology of polymer films, Wiley, New York, pp 85–114
go back to reference Wu C-N, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932. doi:10.1021/bm300465d CrossRef Wu C-N, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932. doi:10.​1021/​bm300465d CrossRef
go back to reference Xu S, He Z, Tan W, Zhang Y (2013) Study on biological materials with the dehydration technology and equipment of banana stems. Appl Mech Mater 327:99–102CrossRef Xu S, He Z, Tan W, Zhang Y (2013) Study on biological materials with the dehydration technology and equipment of banana stems. Appl Mech Mater 327:99–102CrossRef
Metadata
Title
Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation
Authors
R. H. Fitri Faradilla
George Lee
Aditya Rawal
Try Hutomo
Martina H. Stenzel
Jayashree Arcot
Publication date
09-08-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 5/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1025-8

Other articles of this Issue 5/2016

Cellulose 5/2016 Go to the issue