Skip to main content
Top
Published in: Cellulose 1/2010

01-02-2010

Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose

Authors: Zhuo Li, Scott Renneckar, Justin R. Barone

Published in: Cellulose | Issue 1/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study was to prepare nanocomposites based on polyphenols and nanocellulose fibers using relatively benign processing. To accomplish this, phenol was polymerized using horseradish peroxidase in the presence of TEMPO-oxidized nanocellulose. The polyphenol-nanocellulose composite was insoluble in organic solvents but the individual components were soluble. SEM imaging of fracture surfaces of polyphenol, nanocellulose, and composite indicated brittle failure in polyphenol and nanocellulose but ductile failure in the composite pointing to a potential synergistic effect from the addition of the components. Polyphenol existed as spherical or near-spherical “clusters” that were ca. 10 μm in the absence of nanocellulose and ca. 0.1 μm in the presence of nanocellulose. The observed change in structure corresponded to changes in the thermal stability because the composite was more thermally stable than the components. FT-IR analysis of polyphenol-nanocellulose composites showed physical and chemical interactions between the fiber and matrix. This study is a significant improvement in forming nanocomposites without the intensive processing usually required for dispersion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nancomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nancomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef
go back to reference Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931CrossRef Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931CrossRef
go back to reference Ayyagari M, Akkara JA, Kaplan DL (1996) Enzyme-mediated polymerization reactions: peroxidase-catalyzed polyphenol synthesis. Acta Polym 47:193–203CrossRef Ayyagari M, Akkara JA, Kaplan DL (1996) Enzyme-mediated polymerization reactions: peroxidase-catalyzed polyphenol synthesis. Acta Polym 47:193–203CrossRef
go back to reference Ayyagari M, Akkara JA, Kaplan DL (1998) Solvent-enzyme-polymer interactions in the molecular weight control of poly(m-cresol) synthesized in nonaqueous media. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 112–124 Ayyagari M, Akkara JA, Kaplan DL (1998) Solvent-enzyme-polymer interactions in the molecular weight control of poly(m-cresol) synthesized in nonaqueous media. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 112–124
go back to reference Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157CrossRef Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157CrossRef
go back to reference Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbert B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–282CrossRef Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbert B, Cathala B (2007) Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta 226:267–282CrossRef
go back to reference Berglund LA (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 807–832 Berglund LA (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 807–832
go back to reference Cathala B, Rondeau-Mouro C, Lairez D, Bedos-Belval F, Durand H, Gorrichon L, Touzel J-P, Chabbert B, Monties B (2005) Model systems for the understanding of lignified plant cell wall formation. Plant Biosyst 139:93–97 Cathala B, Rondeau-Mouro C, Lairez D, Bedos-Belval F, Durand H, Gorrichon L, Touzel J-P, Chabbert B, Monties B (2005) Model systems for the understanding of lignified plant cell wall formation. Plant Biosyst 139:93–97
go back to reference Dubey S, Singh D, Misra RA (1998) Enzymatic synthesis and various properties of poly(catechol). Enzyme Microb Technol 23:432–437CrossRef Dubey S, Singh D, Misra RA (1998) Enzymatic synthesis and various properties of poly(catechol). Enzyme Microb Technol 23:432–437CrossRef
go back to reference Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210CrossRef Dufresne A, Cavaille JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210CrossRef
go back to reference Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306CrossRef Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306CrossRef
go back to reference Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
go back to reference Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb Technol 31:736–741CrossRef Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Microb Technol 31:736–741CrossRef
go back to reference Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod 20:181–189CrossRef Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fiber boards-evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind Crop Prod 20:181–189CrossRef
go back to reference Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147CrossRef Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147CrossRef
go back to reference Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRef Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRef
go back to reference Gunzler H, Gremlich H-U (2002) IR spectroscopy. Wiley-VCH, Weinheim Gunzler H, Gremlich H-U (2002) IR spectroscopy. Wiley-VCH, Weinheim
go back to reference Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef
go back to reference Johnson RK, Zink-Sharp A, Renneckar S, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRef Johnson RK, Zink-Sharp A, Renneckar S, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRef
go back to reference Kohler R, Nebel K (2006) Cellulose-nanocomposites: towards high performance composite materials. Macromol Symp 244:97–106CrossRef Kohler R, Nebel K (2006) Cellulose-nanocomposites: towards high performance composite materials. Macromol Symp 244:97–106CrossRef
go back to reference Kumar V, Yang T (2002) HNO3/H3PO4-NANO2 mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403–412CrossRef Kumar V, Yang T (2002) HNO3/H3PO4-NANO2 mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403–412CrossRef
go back to reference Lenhart JL, Chaubal MV, Payne GF, Barbari TA (1998) Enzymatic modification of chitosan by tyrosinase. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 188–198 Lenhart JL, Chaubal MV, Payne GF, Barbari TA (1998) Enzymatic modification of chitosan by tyrosinase. In: Gross RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. American Chemical Society, Washington, DC, pp 188–198
go back to reference Li Q, Renneckar SH (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose (in press) Li Q, Renneckar SH (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose (in press)
go back to reference Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRef
go back to reference Matsumura H, Glasser WG (2000) Cellulosic nanocomposites. II. Studies by atomic force microscopy. J Appl Polym Sci 78:2254–2261CrossRef Matsumura H, Glasser WG (2000) Cellulosic nanocomposites. II. Studies by atomic force microscopy. J Appl Polym Sci 78:2254–2261CrossRef
go back to reference Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253CrossRef Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253CrossRef
go back to reference Micic M, Jeremic M, Radotic K, Leblanc RM (2000a) A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. J Coll Inter Sci 231:190–194CrossRef Micic M, Jeremic M, Radotic K, Leblanc RM (2000a) A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. J Coll Inter Sci 231:190–194CrossRef
go back to reference Micic M, Jeremic M, Radotic K, Mavers M, Leblanc RM (2000b) Visualization of artificial lignin supramolecular structures. Scan 22:288–294CrossRef Micic M, Jeremic M, Radotic K, Mavers M, Leblanc RM (2000b) Visualization of artificial lignin supramolecular structures. Scan 22:288–294CrossRef
go back to reference Micic M, Radotic K, Jeremic M, Leblanc RM (2003) Study of self-assembly of the lignin model compound on cellulose model substrate. Macromol Biosci 3:100–106CrossRef Micic M, Radotic K, Jeremic M, Leblanc RM (2003) Study of self-assembly of the lignin model compound on cellulose model substrate. Macromol Biosci 3:100–106CrossRef
go back to reference Micic M, Radotic K, Jeremic M, Djikanovic D, Kammer SB (2004) Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Coll Surf B Bioint 34:33–40CrossRef Micic M, Radotic K, Jeremic M, Djikanovic D, Kammer SB (2004) Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Coll Surf B Bioint 34:33–40CrossRef
go back to reference Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159CrossRef Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159CrossRef
go back to reference Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef Nakagaito AN, Yano H (2008a) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef
go back to reference Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRef Nakagaito AN, Yano H (2008b) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331CrossRef
go back to reference Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRef Noishiki Y, Nishiyama Y, Wada M, Kuga S, Magoshi J (2002) Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci 86:3425–3429CrossRef
go back to reference Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (1999) Soluble polyphenol. Macromol Rap Comm 20:401–403CrossRef Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (1999) Soluble polyphenol. Macromol Rap Comm 20:401–403CrossRef
go back to reference Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (2000) Enzymatic synthesis of soluble polyphenol. Bull Chem Soc Jpn 73:1389–1396CrossRef Oguchi T, Tawaki S-i, Uyama H, Kobayashi S (2000) Enzymatic synthesis of soluble polyphenol. Bull Chem Soc Jpn 73:1389–1396CrossRef
go back to reference Pkk M, Ankerfors M, Kosonen H, Nyknen A, Ahola S, Sterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrm T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Pkk M, Ankerfors M, Kosonen H, Nyknen A, Ahola S, Sterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrm T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
go back to reference Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules (in press) Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules (in press)
go back to reference Radotic K, Simic-Krstic J, Jeremic M, Trifunovic M (1994) A study of lignin formation at the molecular level by scanning tunneling microscopy. Biophys J 66:1763–1767CrossRef Radotic K, Simic-Krstic J, Jeremic M, Trifunovic M (1994) A study of lignin formation at the molecular level by scanning tunneling microscopy. Biophys J 66:1763–1767CrossRef
go back to reference Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49CrossRef Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49CrossRef
go back to reference Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. In Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington, DC, pp 99–113 Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. In Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties. American Chemical Society, Washington, DC, pp 99–113
go back to reference Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRef Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRef
go back to reference Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRef Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444CrossRef
go back to reference Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRef
go back to reference Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20:1263–1269CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20:1263–1269CrossRef
go back to reference Svagan AJ, Hedenqvist MS, Berglund LA (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRef Svagan AJ, Hedenqvist MS, Berglund LA (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRef
go back to reference Touzel J-P, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agric Food Chem 51:981–986CrossRef Touzel J-P, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J Agric Food Chem 51:981–986CrossRef
go back to reference Uyama H, Kobayashi S (2003) Enzymatic synthesis of polyphenols. Curr Org Chem 7:1387–1397CrossRef Uyama H, Kobayashi S (2003) Enzymatic synthesis of polyphenols. Curr Org Chem 7:1387–1397CrossRef
go back to reference Uyama H, Kurioka H, Sugihara J, Kobayashi S (1996) Enzymatic synthesis and thermal properties of a new class of polyphenol. Bull Chem Soc Jpn 69:189–193CrossRef Uyama H, Kurioka H, Sugihara J, Kobayashi S (1996) Enzymatic synthesis and thermal properties of a new class of polyphenol. Bull Chem Soc Jpn 69:189–193CrossRef
go back to reference Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250CrossRef Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250CrossRef
Metadata
Title
Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose
Authors
Zhuo Li
Scott Renneckar
Justin R. Barone
Publication date
01-02-2010
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2010
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-009-9363-4

Other articles of this Issue 1/2010

Cellulose 1/2010 Go to the issue