Skip to main content
Top
Published in: Colloid and Polymer Science 1/2014

01-01-2014 | Invited Review

Nanofibrillated cellulose: surface modification and potential applications

Authors: Susheel Kalia, Sami Boufi, Annamaria Celli, Sarita Kango

Published in: Colloid and Polymer Science | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interest in nanofibrillated cellulose has been increasing exponentially because of its relatively ease of preparation in high yield, high specific surface area, high strength and stiffness, low weight and biodegradability etc. This bio-based nanomaterial has been used mainly in nanocomposites due to its outstanding reinforcing potential. Solvent casting, melt mixing, in situ polymerization and electrospinning are important techniques for the fabrication of nanofibrillated cellulose-based nanocomposites. Due to hydrophilic character along with inherent tendency to form strong network held through hydrogen-bonding, nanofibrillated cellulose cannot uniformly be dispersed in most non-polar polymer matrices. Therefore, surface modification based on polymer grafting, coupling agents, acetylation and cationic modification was used in order to improve compatibility and homogeneous dispersion within polymer matrices. Nanofibrillated cellulose opens the way towards intense and promising research with expanding area of potential applications, including nanocomposite materials, paper and paperboard additive, biomedical applications and as adsorbent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824 Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824
2.
go back to reference Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466 Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466
3.
go back to reference Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169 Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169
4.
go back to reference Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1:97–112 Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1:97–112
5.
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Suspensions containing microfibrillated cellulose. U.S. patent no. 4, 3 78, 381 Turbak AF, Snyder FW, Sandberg KR (1983) Suspensions containing microfibrillated cellulose. U.S. patent no. 4, 3 78, 381
6.
go back to reference Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258 Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258
7.
go back to reference Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110(1)–243110(3) Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110(1)–243110(3)
8.
go back to reference Clemons C, Sedlmair J, Illman B, Ibach R, Hirschmug C (2013) Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol). Polymer. doi:10.1016/j.polymer.2013.02.016 Clemons C, Sedlmair J, Illman B, Ibach R, Hirschmug C (2013) Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol). Polymer. doi:10.​1016/​j.​polymer.​2013.​02.​016
9.
go back to reference Al-Turaif HA (2013) Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog Org Coat 76:477–481 Al-Turaif HA (2013) Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog Org Coat 76:477–481
10.
go back to reference Chinga-Carrascoa G, Averianova N, Gibadullin M, Petrov V, Leirseta I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338 Chinga-Carrascoa G, Averianova N, Gibadullin M, Petrov V, Leirseta I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338
11.
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 815–827
12.
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 797–813
13.
go back to reference Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026 Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026
14.
go back to reference Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165 Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165
15.
go back to reference Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85 Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85
16.
go back to reference Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19:705–711 Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19:705–711
17.
go back to reference Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6:4370–4388 Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6:4370–4388
18.
go back to reference Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574 Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574
19.
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RMJR (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12 Czaja WK, Young DJ, Kawecki M, Brown RMJR (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12
20.
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2009) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585 Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2009) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585
21.
go back to reference Sukjoon Y, Jeffery SH (2010) Composites, enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49:2161–2168 Sukjoon Y, Jeffery SH (2010) Composites, enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49:2161–2168
22.
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494 Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494
23.
go back to reference Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979 Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979
24.
go back to reference Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460 Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460
25.
go back to reference Marques G, Rencoret J, Gutierrez A, del Rio JC (2010) Evaluation of the chemical composition of different non-woody plant fibres used for pulp and paper manufacturing. Open Agric J 4:93–101 Marques G, Rencoret J, Gutierrez A, del Rio JC (2010) Evaluation of the chemical composition of different non-woody plant fibres used for pulp and paper manufacturing. Open Agric J 4:93–101
26.
go back to reference Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259 Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259
27.
go back to reference Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65 Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65
28.
go back to reference Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980 Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980
29.
go back to reference de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270 de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270
30.
go back to reference Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904 Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904
31.
go back to reference Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611 Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611
32.
go back to reference Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671 Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671
33.
go back to reference Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092 Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092
34.
go back to reference Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185 Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185
35.
go back to reference Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Ganan P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592 Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Ganan P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592
36.
go back to reference Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377 Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377
37.
go back to reference Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620 Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620
38.
go back to reference Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 471:3–19 Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 471:3–19
39.
go back to reference Shamlou PA, Siddiqi SF, Titchener-Hooker NJ (1995) A physical model of high pressure disruption of baker's yeast cells. Chem Eng Sci 50:1383–1391 Shamlou PA, Siddiqi SF, Titchener-Hooker NJ (1995) A physical model of high pressure disruption of baker's yeast cells. Chem Eng Sci 50:1383–1391
40.
go back to reference Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268 Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268
41.
go back to reference Park JI, Saffari PA, Kumar S, Gunther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443 Park JI, Saffari PA, Kumar S, Gunther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443
42.
go back to reference Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305 Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305
43.
go back to reference Ahola S, Salmi J, Johansson LS, Laine J, Osterberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282 Ahola S, Salmi J, Johansson LS, Laine J, Osterberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282
44.
go back to reference Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093 Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093
45.
go back to reference Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278 Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278
46.
go back to reference Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69:2434–2437 Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69:2434–2437
47.
go back to reference Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023 Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023
48.
go back to reference Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399 Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399
49.
go back to reference Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762 Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762
50.
go back to reference Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. J Appl Polym Sci 113:1270–1275 Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. J Appl Polym Sci 113:1270–1275
51.
go back to reference Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811 Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811
52.
go back to reference Johnson R, Zink-Sharp A, Renneckar S, Glasser W (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238 Johnson R, Zink-Sharp A, Renneckar S, Glasser W (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238
53.
go back to reference Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442 Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442
54.
go back to reference Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micronanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88 Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micronanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88
55.
go back to reference Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose—various options utilizing ultrasound. Bioresources 7:422–436 Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose—various options utilizing ultrasound. Bioresources 7:422–436
56.
go back to reference Dong XM, Revol JF, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32 Dong XM, Revol JF, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32
57.
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500 Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500
58.
go back to reference Madsen B (2004) Properties of plant fibre yarn polymer composites an experimental study. Technical University of Denmark; report BYG·DTU R-082 Madsen B (2004) Properties of plant fibre yarn polymer composites an experimental study. Technical University of Denmark; report BYG·DTU R-082
59.
go back to reference Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194 Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194
60.
go back to reference Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425 Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425
61.
go back to reference Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691 Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691
62.
go back to reference Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441 Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441
63.
go back to reference Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158 Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158
64.
go back to reference Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527 Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527
65.
go back to reference Besbes I, ReiVilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206 Besbes I, ReiVilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206
66.
go back to reference Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983 Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983
67.
go back to reference Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294 Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294
68.
go back to reference Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res 23:299–304 Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res 23:299–304
69.
go back to reference Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499 Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499
70.
go back to reference Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205 Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205
71.
go back to reference Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111 Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111
72.
go back to reference Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulp. Ind Eng Chem Res 48:11211–11219 Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulp. Ind Eng Chem Res 48:11211–11219
73.
go back to reference Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677 Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677
74.
go back to reference Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater 81:1109–1112 Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater 81:1109–1112
75.
go back to reference Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A Mater 80:155–159 Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A Mater 80:155–159
76.
go back to reference d’A Clark J (1954) Properties and treatment of pulp for paper. In: Ott E, Spurlin EM, Grafflin MW (eds) Cellulose and cellulose derivatives. Interscience, New York, pp 621–671 d’A Clark J (1954) Properties and treatment of pulp for paper. In: Ott E, Spurlin EM, Grafflin MW (eds) Cellulose and cellulose derivatives. Interscience, New York, pp 621–671
77.
go back to reference Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56 Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56
78.
go back to reference Jiang F, Hsieh Y (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40 Jiang F, Hsieh Y (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40
79.
go back to reference Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996 Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996
80.
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491 Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491
81.
go back to reference Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431 Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431
82.
go back to reference Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398 Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398
83.
go back to reference Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications: catalytic conversion of renewables. Top Catal 27:49–66 Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications: catalytic conversion of renewables. Top Catal 27:49–66
84.
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85 Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85
85.
go back to reference Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2013) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym. doi:10.1016/j.carbpol.2013.08.032 Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2013) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym. doi:10.​1016/​j.​carbpol.​2013.​08.​032
86.
go back to reference Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849 Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849
87.
go back to reference Tejado A, Nur Alam M, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibres into cellulose nanofibres. Cellulose 19:831–842 Tejado A, Nur Alam M, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibres into cellulose nanofibres. Cellulose 19:831–842
88.
go back to reference Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydr Polym 61:191–197 Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydr Polym 61:191–197
89.
go back to reference Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941 Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941
90.
go back to reference Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. Bioresources 1:176–188 Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. Bioresources 1:176–188
91.
go back to reference Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344 Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344
92.
go back to reference Isto H, Kaj B, Marianna V, Taina K, Pertti N (2012) Process for producing microfibrillated cellulose. PCT/IB10/53044 Isto H, Kaj B, Marianna V, Taina K, Pertti N (2012) Process for producing microfibrillated cellulose. PCT/IB10/53044
93.
go back to reference Kopcke V (2008) Improvement on cellulose accessibility and reactivity of different wood pulps. Licentiate thesis, Royal Institute of Technology Kopcke V (2008) Improvement on cellulose accessibility and reactivity of different wood pulps. Licentiate thesis, Royal Institute of Technology
94.
go back to reference Cristobal C, Encarnacion R, Mercedes B, Paloma M, Jose MN, Eulogio C (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700 Cristobal C, Encarnacion R, Mercedes B, Paloma M, Jose MN, Eulogio C (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700
95.
go back to reference Deep B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997 Deep B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997
96.
go back to reference Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725 Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725
97.
go back to reference Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose. doi:1007/s10570-013-0036-y Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose. doi:1007/s10570-013-0036-y
100.
go back to reference Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalisation of cellulose nanocrystals. Soft Matter 4:2238–2244 Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalisation of cellulose nanocrystals. Soft Matter 4:2238–2244
101.
go back to reference Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 9999:1–16 Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 9999:1–16
102.
go back to reference Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerisation (SI-ATRP). Langmuir 25:8280–8286 Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerisation (SI-ATRP). Langmuir 25:8280–8286
103.
go back to reference Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997 Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997
104.
go back to reference Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73 Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73
105.
go back to reference Xiao M, Li S, Chanklin W, Zheng A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519 Xiao M, Li S, Chanklin W, Zheng A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519
106.
go back to reference Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312 Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312
107.
go back to reference Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45 Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45
108.
go back to reference Mishra AR, Srinivasan R, Gupta P (2003) Psyllium-g-polyacrylonitrile: synthesis and characterization. Colloid Polym Sci 281:187–189 Mishra AR, Srinivasan R, Gupta P (2003) Psyllium-g-polyacrylonitrile: synthesis and characterization. Colloid Polym Sci 281:187–189
109.
go back to reference Littunen K, Hippi U, Johansson LS, Osterberg M, Tammelinc T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047 Littunen K, Hippi U, Johansson LS, Osterberg M, Tammelinc T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047
110.
go back to reference Lonnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433 Lonnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433
111.
go back to reference Yi J, Xu QX, Zhang XF, Zhang HL (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412 Yi J, Xu QX, Zhang XF, Zhang HL (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412
112.
go back to reference Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837 Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837
113.
go back to reference Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Sterberg MO, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 2010:2683–2691 Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Sterberg MO, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 2010:2683–2691
114.
go back to reference Araki J, Wada M, Kuga S (2001) Steric stabilisation of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27 Araki J, Wada M, Kuga S (2001) Steric stabilisation of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27
115.
go back to reference Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296 Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296
116.
go back to reference Monte SJ, Kenrich Petrochemicals, Inc. (1995) Ken-React reference manual—titanate, zirconate and aluminate coupling agents, 3rd rev. edn. Kenrich Petrochemicals, Bayonne Monte SJ, Kenrich Petrochemicals, Inc. (1995) Ken-React reference manual—titanate, zirconate and aluminate coupling agents, 3rd rev. edn. Kenrich Petrochemicals, Bayonne
117.
go back to reference Gousse C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575 Gousse C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575
118.
go back to reference Lu J, Drzal LT (2010) Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. J Polym Sci Polym Phys 48:153–161 Lu J, Drzal LT (2010) Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. J Polym Sci Polym Phys 48:153–161
119.
go back to reference Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127 Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127
120.
go back to reference Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464 Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464
121.
go back to reference Yakubu A, Umar TM, Mohammed SSD (2011) Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface Interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry. Adv Appl Sci Res 2:532–540 Yakubu A, Umar TM, Mohammed SSD (2011) Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface Interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry. Adv Appl Sci Res 2:532–540
122.
go back to reference Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. In: Hashim A (ed) Advances in nanocomposite technology. Intech, Croatia, pp 319–334 Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. In: Hashim A (ed) Advances in nanocomposite technology. Intech, Croatia, pp 319–334
123.
go back to reference Rodionova G, Lenes O, Eriksen O, Gregersen (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134 Rodionova G, Lenes O, Eriksen O, Gregersen (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134
124.
go back to reference Hill CAS, Cetin NS, Ozmen N (2000) Potential catalysts for the acetylation of wood. Holzforschung 54:269–272 Hill CAS, Cetin NS, Ozmen N (2000) Potential catalysts for the acetylation of wood. Holzforschung 54:269–272
125.
go back to reference Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307 Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307
126.
go back to reference Karppinen A, Vesterinen AH, Saarinen T, Pietikainen P, Seppala J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390 Karppinen A, Vesterinen AH, Saarinen T, Pietikainen P, Seppala J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390
127.
go back to reference Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanoparticle Res 13:773–782 Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanoparticle Res 13:773–782
128.
go back to reference Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331 Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331
129.
go back to reference Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212 Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212
130.
go back to reference Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580 Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580
131.
go back to reference Ramazanov MA, Ali-Zade RA, Agakishieva PB (2010) Structure and magnetic properties of nanocomposites on the basis PE + Fe3O4 и PVDF + Fe3O4. Dig J Nanomater Biostructures 5:727–733 Ramazanov MA, Ali-Zade RA, Agakishieva PB (2010) Structure and magnetic properties of nanocomposites on the basis PE + Fe3O4 и PVDF + Fe3O4. Dig J Nanomater Biostructures 5:727–733
132.
go back to reference Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367 Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367
133.
go back to reference Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Seppala J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49:335–344 Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Seppala J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49:335–344
134.
go back to reference Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956 Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956
135.
go back to reference Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 91:183–190 Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 91:183–190
136.
go back to reference Liu A, Berglund LA (2013) Fire-retardant and ductile clay nanopaper biocomposites based on montmorillonite in matrix of cellulose nanofibers and carboxymethyl cellulose. Eur Polym J 49:940–949 Liu A, Berglund LA (2013) Fire-retardant and ductile clay nanopaper biocomposites based on montmorillonite in matrix of cellulose nanofibers and carboxymethyl cellulose. Eur Polym J 49:940–949
137.
go back to reference Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32:383–394 Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32:383–394
138.
go back to reference Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626 Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626
139.
go back to reference Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106 Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106
140.
go back to reference Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192 Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192
141.
go back to reference Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747 Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747
142.
go back to reference Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A Appl Sci 39:685–689 Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A Appl Sci 39:685–689
143.
go back to reference Gong G, Pyo J, Mathew AP, Oksman K (2011) Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Compos Part A Appl Sci 42:1275–1282 Gong G, Pyo J, Mathew AP, Oksman K (2011) Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Compos Part A Appl Sci 42:1275–1282
144.
go back to reference Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci 36:1486–1493 Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci 36:1486–1493
145.
go back to reference Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914 Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914
146.
go back to reference Plummer CJG, Choo CKC, Boissard CIR, Bourban P-E, Månson J-AE (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci. doi:10.1007/s00396-013-2968-z Plummer CJG, Choo CKC, Boissard CIR, Bourban P-E, Månson J-AE (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci. doi:10.​1007/​s00396-013-2968-z
147.
go back to reference Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421 Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421
148.
go back to reference Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J49:335–344 Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J49:335–344
149.
go back to reference Nystrom G, Mihranyan A, Razaq A, Lindstrom T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B114:4178–4182 Nystrom G, Mihranyan A, Razaq A, Lindstrom T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B114:4178–4182
150.
go back to reference Fortunato G, Zimmermann T, Lubben J, Bordeanu N, Hufenus R (2012) Reinforcement of polymeric submicrometer sized fibers by microfibrillated cellulose. Macromol Mater Eng 297:576–584 Fortunato G, Zimmermann T, Lubben J, Bordeanu N, Hufenus R (2012) Reinforcement of polymeric submicrometer sized fibers by microfibrillated cellulose. Macromol Mater Eng 297:576–584
151.
go back to reference Medeiros ES, Mattoso LHC, Ito EN, Gregorski KS, Robertson GH, Offeman RD, Wood DF, Orts WJ, Imam SH (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bioenergy 2:1–12 Medeiros ES, Mattoso LHC, Ito EN, Gregorski KS, Robertson GH, Offeman RD, Wood DF, Orts WJ, Imam SH (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bioenergy 2:1–12
153.
go back to reference Xiang C, Frey MW (2008) Nanocomposite fibers electrospun from biodegradable polymers. The 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008 Xiang C, Frey MW (2008) Nanocomposite fibers electrospun from biodegradable polymers. The 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008
154.
go back to reference Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156:390–397 Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156:390–397
155.
go back to reference Eyholzer C, Borges de Couraca A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Manson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427 Eyholzer C, Borges de Couraca A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Manson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427
156.
go back to reference Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298 Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298
157.
go back to reference Mathew AP, Oksman K, Pierron D, Harmad M-F (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150 Mathew AP, Oksman K, Pierron D, Harmad M-F (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150
158.
go back to reference Shimotoyodome A, Suzuki J, Kumamoto Y, Hase T, Isogai A (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12:3812–8 Shimotoyodome A, Suzuki J, Kumamoto Y, Hase T, Isogai A (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12:3812–8
159.
go back to reference Cherian BM, Leao AL, Ferreira de Souza S, Costa LMM, Molina de Olyveira G, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798 Cherian BM, Leao AL, Ferreira de Souza S, Costa LMM, Molina de Olyveira G, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798
160.
go back to reference Sang Y, Li F, Gu Q, Liang C, Chen J (2008) Heavy metal-contaminated ground water treatment by novel nanofiber membrane. Desalination 223:349–360 Sang Y, Li F, Gu Q, Liang C, Chen J (2008) Heavy metal-contaminated ground water treatment by novel nanofiber membrane. Desalination 223:349–360
161.
go back to reference Belhalfaoui B, Aziz A, Elandaloussi EH, Oualia MS, De Menorval LC (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium removal from spiked high-hardness groundwater. J Hazard Mater 169:831–837 Belhalfaoui B, Aziz A, Elandaloussi EH, Oualia MS, De Menorval LC (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium removal from spiked high-hardness groundwater. J Hazard Mater 169:831–837
162.
go back to reference Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial waste water using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8:43–53 Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial waste water using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8:43–53
163.
go back to reference Ricordel S, Taha S, Cisse I, Dorange G (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24:389–401 Ricordel S, Taha S, Cisse I, Dorange G (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24:389–401
164.
go back to reference Stephen M, Catherine N, Brenda M, Andrew K, Leslie P, Corrinec G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927 Stephen M, Catherine N, Brenda M, Andrew K, Leslie P, Corrinec G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927
165.
go back to reference Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108 Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108
166.
go back to reference Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crop Prod 49:33–42 Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crop Prod 49:33–42
167.
go back to reference Gonzalez I, Boufi S, Pe’lach MA, Alcala’ M, Vilaseca F, Mutje’ P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7:5167–5180 Gonzalez I, Boufi S, Pe’lach MA, Alcala’ M, Vilaseca F, Mutje’ P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7:5167–5180
168.
go back to reference Hii C, Gregersen OW, Chinga-Carrasco G, Eriksen O (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nordic Pulp Pap Res J 27:388–396 Hii C, Gregersen OW, Chinga-Carrasco G, Eriksen O (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nordic Pulp Pap Res J 27:388–396
169.
go back to reference Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020 Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020
170.
go back to reference Gonzalez I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435 Gonzalez I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435
Metadata
Title
Nanofibrillated cellulose: surface modification and potential applications
Authors
Susheel Kalia
Sami Boufi
Annamaria Celli
Sarita Kango
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 1/2014
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-013-3112-9

Other articles of this Issue 1/2014

Colloid and Polymer Science 1/2014 Go to the issue

Premium Partners