Skip to main content
Top

2020 | OriginalPaper | Chapter

Nanomedicine for Treating Specific Disorders

Authors : M. Ramesh, K. Anand

Published in: Integrative Nanomedicine for New Therapies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanomedicine utilizes the molecular nanotechnology in the form of nanomaterial, and nanobiosensors to modify the properties of the drug for the treatment of human illness. The nanomedicine improves the pharmacokinetics, pharmacodynamics, stability properties of existing drugs. In addition, the nanomedicine serves as a diagnostic tool to monitor the physiological functions of the human body. The nanomedicine formulates the existing drug without using dose-limiting toxic excipients, and therefore nanomedicines reduce the toxicity of the drug. The sustained and controlled release of drug from nanomedicine also enhances the safety and efficacy. Overall, the therapeutic index of a drug is enhanced when the drug is administered in the form of nanomedicine. At present, a numerous number of nanomedicines have been developed to treat a wide range of human illness like cancer, HIV, kidney diseases, angiogenesis, etc. Recently, nanotechnology has been viewed as a revolutionary discipline in pharmaceutical and medical sciences. The advancements in nanomedicines are continuously growing to treat life-threatening diseases such as cancer, HIV, etc. Despite, there is a significant progress in the development of nanomedicines, the clinical translation of nanomedicine remains challenge in drug development. The present review describes the challenges, recent progress in development, therapeutic properties, clinical role and potential outcome of nanomedicine in treating specific human disorders. It will be useful to simplify the monitoring, diagnosis, and curing of diseases in personalized health care.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8, 102. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8, 102.
go back to reference Allaker, R. (2010). The use of nanoparticles to control oral biofilm formation. Journal of Dental Research, 89, 1175–1186. Allaker, R. (2010). The use of nanoparticles to control oral biofilm formation. Journal of Dental Research, 89, 1175–1186.
go back to reference Arruebo, M., Valladares, M., & González-Fernández, Á. (2009). Antibody-conjugated nanoparticles for biomedical applications. Journal of Nanomaterials, 2009, 37. Arruebo, M., Valladares, M., & González-Fernández, Á. (2009). Antibody-conjugated nanoparticles for biomedical applications. Journal of Nanomaterials, 2009, 37.
go back to reference Asta, M., Kauzlarich, S. M., Liu, K., Navrotsky, A., & Osterloh, F. E. (2007). Inorganic nanoparticles. Unique properties and novel applications. Material Matters (Milwaukee, WI, USA), 2, 3–6. Asta, M., Kauzlarich, S. M., Liu, K., Navrotsky, A., & Osterloh, F. E. (2007). Inorganic nanoparticles. Unique properties and novel applications. Material Matters (Milwaukee, WI, USA), 2, 3–6.
go back to reference Azar, D. T. (2006). Corneal angiogenic privilege: Angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society, 104, 264–302. Azar, D. T. (2006). Corneal angiogenic privilege: Angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society, 104, 264–302.
go back to reference Bennett, K. M., Zhou, H., Sumner, J. P., Dodd, S. J., Bouraoud, N., Doi, K., et al. (2008). MRI of the basement membrane using charged nanoparticles as contrast agents. Magnetic Resonance in Medicine, 60, 564–574. Bennett, K. M., Zhou, H., Sumner, J. P., Dodd, S. J., Bouraoud, N., Doi, K., et al. (2008). MRI of the basement membrane using charged nanoparticles as contrast agents. Magnetic Resonance in Medicine, 60, 564–574.
go back to reference Besinis, A., De Peralta, T., & Handy, R. D. (2014). Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology, 8, 745–754. Besinis, A., De Peralta, T., & Handy, R. D. (2014). Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology, 8, 745–754.
go back to reference Bhaskar, S., & Lim, S. (2017). Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials, 9, e371. Bhaskar, S., & Lim, S. (2017). Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials, 9, e371.
go back to reference Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science, 128, 81–93. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science, 128, 81–93.
go back to reference Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology-Cell Physiology, 307, C25–C38. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology-Cell Physiology, 307, C25–C38.
go back to reference Bose, A., & Wong, T. W. (2015). Nanotechnology-enabled drug delivery for cancer therapy. Nanotechnology applications for tissue engineering (pp. 173–193). Amsterdam: Elsevier. Bose, A., & Wong, T. W. (2015). Nanotechnology-enabled drug delivery for cancer therapy. Nanotechnology applications for tissue engineering (pp. 173–193). Amsterdam: Elsevier.
go back to reference Boussoufi, F., Gallón, S. M. N., Chang, R., & Webster, T. J. (2018). Synthesis and study of cell-penetrating peptide-modified gold nanoparticles. International Journal of Nanomedicine, 13, 6199–6205. Boussoufi, F., Gallón, S. M. N., Chang, R., & Webster, T. J. (2018). Synthesis and study of cell-penetrating peptide-modified gold nanoparticles. International Journal of Nanomedicine, 13, 6199–6205.
go back to reference Buhleier, E., Wehner, W., & Vögtle, F. (1978). ‘Cascade’‐and’ Nonskid‐Chain‐Like’ syntheses of molecular cavity topologies. Chemischer Informationsdienst 9. Buhleier, E., Wehner, W., & Vögtle, F. (1978). ‘Cascade’‐and’ Nonskid‐Chain‐Like’ syntheses of molecular cavity topologies. Chemischer Informationsdienst 9.
go back to reference Carson, D., Jiang, Y., & Woodrow, K. A. (2016). Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharmaceutical Research, 33, 125–136. Carson, D., Jiang, Y., & Woodrow, K. A. (2016). Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharmaceutical Research, 33, 125–136.
go back to reference Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials, 8, 42. Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials, 8, 42.
go back to reference de Ilarduya, C. T., Sun, Y., & Düzgüneş, N. (2010). Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 40, 159–170. de Ilarduya, C. T., Sun, Y., & Düzgüneş, N. (2010). Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 40, 159–170.
go back to reference Duro-Castano, A., Gallon, E., Decker, C., & Vicent, M. J. (2017). Modulating angiogenesis with integrin-targeted nanomedicines. Advanced Drug Delivery Reviews, 119, 101–119. Duro-Castano, A., Gallon, E., Decker, C., & Vicent, M. J. (2017). Modulating angiogenesis with integrin-targeted nanomedicines. Advanced Drug Delivery Reviews, 119, 101–119.
go back to reference Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine 9(1), 1–14. Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine 9(1), 1–14.
go back to reference Gannimani, R., Ramesh, M., Mtambo, S., Pillay, K., Soliman, M. E., & Govender, P. (2016). γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol. Journal of Inorganic Biochemistry, 157, 15–24. Gannimani, R., Ramesh, M., Mtambo, S., Pillay, K., Soliman, M. E., & Govender, P. (2016). γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol. Journal of Inorganic Biochemistry, 157, 15–24.
go back to reference Gao, Y., Zhou, Y., Zhao, L., Zhang, C., Li, Y., Li, J., et al. (2015). Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomaterialia, 23, 127–135. Gao, Y., Zhou, Y., Zhao, L., Zhang, C., Li, Y., Li, J., et al. (2015). Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomaterialia, 23, 127–135.
go back to reference Gebel, T., Foth, H., Damm, G., Freyberger, A., Kramer, P. J., Lilienblum, W., et al. (2014). Manufactured nanomaterials: Categorization and approaches to hazard assessment. Archives of Toxicology, 88, 2191–2211. Gebel, T., Foth, H., Damm, G., Freyberger, A., Kramer, P. J., Lilienblum, W., et al. (2014). Manufactured nanomaterials: Categorization and approaches to hazard assessment. Archives of Toxicology, 88, 2191–2211.
go back to reference Hall, C. E. (1953). Introduction to electron microscopy. London: McGra-hill Publishing Company Ltd. Hall, C. E. (1953). Introduction to electron microscopy. London: McGra-hill Publishing Company Ltd.
go back to reference Hare, J. I., Lammers, T., Ashford, M. B., Puri, S., Storm, G., & Barry, S. T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25–38. Hare, J. I., Lammers, T., Ashford, M. B., Puri, S., Storm, G., & Barry, S. T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25–38.
go back to reference Jędrzak, A., Grześkowiak, B. F., Coy, E., Wojnarowicz, J., Szutkowski, K., Jurga, S., et al. (2018). Dendrimer based theranostic nanostructures for combined chemo-and photothermal therapy of liver cancer cells in Vitro. Colloids and Surfaces B: Biointerfaces, 173, 698–708. Jędrzak, A., Grześkowiak, B. F., Coy, E., Wojnarowicz, J., Szutkowski, K., Jurga, S., et al. (2018). Dendrimer based theranostic nanostructures for combined chemo-and photothermal therapy of liver cancer cells in Vitro. Colloids and Surfaces B: Biointerfaces, 173, 698–708.
go back to reference Kawamura, A., & Aoyama, Y. (1983). Immunofluorescence in medical science. Tokyo: University of Tokyo Press. Kawamura, A., & Aoyama, Y. (1983). Immunofluorescence in medical science. Tokyo: University of Tokyo Press.
go back to reference Khurana, A., Tekula, S., & Godugu, C. (2018). Nanoceria suppresses multiple low doses of streptozotocin-induced Type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine, 13, 1905–1922. Khurana, A., Tekula, S., & Godugu, C. (2018). Nanoceria suppresses multiple low doses of streptozotocin-induced Type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine, 13, 1905–1922.
go back to reference Klibanov, A. L., Maruyama, K., Torchilin, V. P., & Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Letters, 268, 235–237. Klibanov, A. L., Maruyama, K., Torchilin, V. P., & Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Letters, 268, 235–237.
go back to reference Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Advanced Drug Delivery Reviews, 71, 2–14. Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Advanced Drug Delivery Reviews, 71, 2–14.
go back to reference Lampri, E., & Elli, I. (2013). Angiogenesis: Insights from a systematic overview. Lampri, E., & Elli, I. (2013). Angiogenesis: Insights from a systematic overview.
go back to reference Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005. Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005.
go back to reference Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392. Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.
go back to reference Miller, M. A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M. M., Kohler, R. H., Yang, K. S., et al. (2015). Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 7, 314ra183. Miller, M. A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M. M., Kohler, R. H., Yang, K. S., et al. (2015). Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 7, 314ra183.
go back to reference Min, Y., Caster, J. M., Eblan, M. J., & Wang, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115, 11147–11190. Min, Y., Caster, J. M., Eblan, M. J., & Wang, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115, 11147–11190.
go back to reference Pan, D., Caruthers, S. D., Chen, J., Winter, P. M., SenPan, A., Schmieder, A. H., et al. (2010). Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Medicinal Chemistry, 2, 471–490. Pan, D., Caruthers, S. D., Chen, J., Winter, P. M., SenPan, A., Schmieder, A. H., et al. (2010). Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Medicinal Chemistry, 2, 471–490.
go back to reference Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2, 3–14. Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2, 3–14.
go back to reference Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96, 614–618. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96, 614–618.
go back to reference Pokorski, J. K., & Steinmetz, N. F. (2010). The art of engineering viral nanoparticles. Molecular Pharmaceutics, 8, 29–43. Pokorski, J. K., & Steinmetz, N. F. (2010). The art of engineering viral nanoparticles. Molecular Pharmaceutics, 8, 29–43.
go back to reference Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26. Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26.
go back to reference Rajeshkumar, S., & Naik, P. (2018). Synthesis and biomedical applications of Cerium oxide nanoparticles–A Review. Biotechnology Reports, 17, 1–5. Rajeshkumar, S., & Naik, P. (2018). Synthesis and biomedical applications of Cerium oxide nanoparticles–A Review. Biotechnology Reports, 17, 1–5.
go back to reference Rosan, B., & Lamont, R. J. (2000). Dental plaque formation. Microbes and Infection, 2, 1599–1607. Rosan, B., & Lamont, R. J. (2000). Dental plaque formation. Microbes and Infection, 2, 1599–1607.
go back to reference Sahoo, S. K. (2005). Applications of nanomedicine. Asia Pacific Biotech News, 9, 3. Sahoo, S. K. (2005). Applications of nanomedicine. Asia Pacific Biotech News, 9, 3.
go back to reference Santulli, G. (2013). Angiogenesis: Insights from a systematic overview. Nova Biomedical. Santulli, G. (2013). Angiogenesis: Insights from a systematic overview. Nova Biomedical.
go back to reference Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86, 215–223. Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86, 215–223.
go back to reference Sonneville-Aubrun, O., Simonnet, J. T., & L’alloret, F. (2004). Nanoemulsions: A new vehicle for skincare products. Advances in Colloid and Interface Science, 108, 145–149. Sonneville-Aubrun, O., Simonnet, J. T., & L’alloret, F. (2004). Nanoemulsions: A new vehicle for skincare products. Advances in Colloid and Interface Science, 108, 145–149.
go back to reference Stuart, B. (2005). Infrared spectroscopy. In Kirk‐Othmer encyclopedia of chemical technology. Stuart, B. (2005). Infrared spectroscopy. In Kirk‐Othmer encyclopedia of chemical technology.
go back to reference US National Science Foundation. (2014, February 25). Market report on emerging nanotechnology now available. Market Report. Retrieved June 7, 2016. US National Science Foundation. (2014, February 25). Market report on emerging nanotechnology now available. Market Report. Retrieved June 7, 2016.
go back to reference Venkatraman, S. (2014). Has nanomedicine lived up to its promise? Nanotechnology, 25, 372501. Venkatraman, S. (2014). Has nanomedicine lived up to its promise? Nanotechnology, 25, 372501.
go back to reference Ventola, C. L. (2012). The nanomedicine revolution: Part 1: Emerging concepts. Pharmacy and Therapeutics, 37, 512. Ventola, C. L. (2012). The nanomedicine revolution: Part 1: Emerging concepts. Pharmacy and Therapeutics, 37, 512.
go back to reference Weng, Y., Liu, J., Jin, S., Guo, W., Liang, X., & Hu, Z. (2017). Nanotechnology-based strategies for treatment of ocular disease. Acta pharmaceutica sinica B, 7, 281–291. Weng, Y., Liu, J., Jin, S., Guo, W., Liang, X., & Hu, Z. (2017). Nanotechnology-based strategies for treatment of ocular disease. Acta pharmaceutica sinica B, 7, 281–291.
go back to reference Whitesides, G. M. (2005). Nanoscience, nanotechnology, and chemistry. Small, 1, 172–179. Whitesides, G. M. (2005). Nanoscience, nanotechnology, and chemistry. Small, 1, 172–179.
go back to reference Yang, S., Yang, Y., Cui, S., Feng, Z., Du, Y., Song, Z., et al. (2018). Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties. International Journal of Nanomedicine, 13, 4987–5002. Yang, S., Yang, Y., Cui, S., Feng, Z., Du, Y., Song, Z., et al. (2018). Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties. International Journal of Nanomedicine, 13, 4987–5002.
go back to reference Yao, H., Li, J., Song, Y., Zhao, H., Wei, Z., Li, X., et al. (2018). Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine, 13, 6249–6264. Yao, H., Li, J., Song, Y., Zhao, H., Wei, Z., Li, X., et al. (2018). Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine, 13, 6249–6264.
go back to reference Yuan, X., Marcano, D. C., Shin, C. S., Hua, X., Isenhart, L. C., Pflugfelder, S. C., & Acharya, G. (2015). Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS nano, 9, 1749–1758. Yuan, X., Marcano, D. C., Shin, C. S., Hua, X., Isenhart, L. C., Pflugfelder, S. C., & Acharya, G. (2015). Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS nano, 9, 1749–1758.
go back to reference Zhang, B., Jiang, T., Tuo, Y., Jin, K., Luo, Z., Shi, W., et al. (2017). Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Letters, 410, 12–19. Zhang, B., Jiang, T., Tuo, Y., Jin, K., Luo, Z., Shi, W., et al. (2017). Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Letters, 410, 12–19.
go back to reference Zhou, X., Shi, G., Fan, B., Cheng, X., Zhang, X., Wang, X., et al. (2018). Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. International Journal of Nanomedicine, 13, 6265–6277. Zhou, X., Shi, G., Fan, B., Cheng, X., Zhang, X., Wang, X., et al. (2018). Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. International Journal of Nanomedicine, 13, 6265–6277.
go back to reference Zuckerman, J. E., & Davis, M. E. (2013). Targeting therapeutics to the glomerulus with nanoparticles. Advances in Chronic Kidney Disease, 20, 500–507. Zuckerman, J. E., & Davis, M. E. (2013). Targeting therapeutics to the glomerulus with nanoparticles. Advances in Chronic Kidney Disease, 20, 500–507.
Metadata
Title
Nanomedicine for Treating Specific Disorders
Authors
M. Ramesh
K. Anand
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36260-7_11

Premium Partners