Skip to main content
Top
Published in: Meccanica 10/2020

17-09-2020

Natural frequencies of rotating twisted beams: a perturbation method based approach

Authors: Ajinkya Baxy, Abhijit Sarkar

Published in: Meccanica | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structures such as turbomachinery blades, industrial fans, propellers, etc. can be modeled as twisted beams. The study of dynamics of these structures is vital as operational failure of such structures can have catastrophic consequences. As the inclusion of twist and rotation complicates the problem, Finite Element (FE) method is widely used to determine the modal characteristics of rotating twisted beams. In this work, a novel formula is derived to estimate the natural frequencies of rotating twisted beams. The formula is derived using the perturbation method. The twist angle and the rotating speed are treated as the perturbation parameters. In general, the dynamics of rotating twisted beams is coupled in the two transverse planes. However, in the first part of the work the problem is assumed to be uncoupled and it is shown that this assumption is valid under certain cases. In the second part, the problem of general coupled dynamics is solved. Interesting insights based on the formula are presented. The accuracy of the derived formula is verified by comparing it with the literature and FE simulation results. It has been shown that the formula is valid over a fairly large range of twist angles and rotating speeds. In contrast to the detailed FE simulation, the derived analytical formula will be better suited for design iterations in industrial practice.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Banerjee J (2001) Free vibration analysis of a twisted beam using the dynamic stiffness method. Int J Solids Struct 38(38–39):6703–6722CrossRef Banerjee J (2001) Free vibration analysis of a twisted beam using the dynamic stiffness method. Int J Solids Struct 38(38–39):6703–6722CrossRef
2.
go back to reference Banerjee J, Kennedy D (2014) Dynamic stiffness method for inplane free vibration of rotating beams including coriolis effects. J Sound Vib 333(26):7299–7312CrossRef Banerjee J, Kennedy D (2014) Dynamic stiffness method for inplane free vibration of rotating beams including coriolis effects. J Sound Vib 333(26):7299–7312CrossRef
3.
go back to reference Baxy A, Sarkar A (2020) Natural frequencies of a rotating curved cantilever beam: a perturbation method-based approach. Proc Inst Mech Eng Part C J Mech Eng Sci 234(9):1706–1719CrossRef Baxy A, Sarkar A (2020) Natural frequencies of a rotating curved cantilever beam: a perturbation method-based approach. Proc Inst Mech Eng Part C J Mech Eng Sci 234(9):1706–1719CrossRef
4.
go back to reference Cao D, Gao Y (2019) Free vibration of non-uniform axially functionally graded beams using the asymptotic development method. Appl Math Model 40(1):85–96MathSciNet Cao D, Gao Y (2019) Free vibration of non-uniform axially functionally graded beams using the asymptotic development method. Appl Math Model 40(1):85–96MathSciNet
5.
go back to reference Cao D, Gao Y, Wang J et al (2019) Analytical analysis of free vibration of non-uniform and non-homogeneous beams: asymptotic perturbation approach. Appl Math Model 65:526–534MathSciNetCrossRef Cao D, Gao Y, Wang J et al (2019) Analytical analysis of free vibration of non-uniform and non-homogeneous beams: asymptotic perturbation approach. Appl Math Model 65:526–534MathSciNetCrossRef
6.
go back to reference Carnegie W, Thomas J (1972) The coupled bending–bending vibration of pre-twisted tapered blading. J Eng Ind 94(1):255–266CrossRef Carnegie W, Thomas J (1972) The coupled bending–bending vibration of pre-twisted tapered blading. J Eng Ind 94(1):255–266CrossRef
7.
go back to reference Dawson B (1968) Coupled bending-bending vibrations of pre-twisted cantilever blading treated by the Rayleigh–Ritz energy method. J Mech Eng Sci 10(5):381–388CrossRef Dawson B (1968) Coupled bending-bending vibrations of pre-twisted cantilever blading treated by the Rayleigh–Ritz energy method. J Mech Eng Sci 10(5):381–388CrossRef
8.
go back to reference Dawson B, Ghosh N, Carnegie W (1971) Effect of slenderness ratio on the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-section. J Mech Eng Sci 13(1):51–59CrossRef Dawson B, Ghosh N, Carnegie W (1971) Effect of slenderness ratio on the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-section. J Mech Eng Sci 13(1):51–59CrossRef
10.
go back to reference Ganguli R (2016) Physics based finite element interpolation functions for rotating beams. Proc Indian Natl Sci Acad 82(2):257–270 Ganguli R (2016) Physics based finite element interpolation functions for rotating beams. Proc Indian Natl Sci Acad 82(2):257–270
11.
go back to reference Ganguli R (2017) Finite element analysis of rotating beams. Springer, SingaporeCrossRef Ganguli R (2017) Finite element analysis of rotating beams. Springer, SingaporeCrossRef
12.
go back to reference Hashemi S, Richard M (2001) Natural frequencies of rotating uniform beams with coriolis effects. J Vib Acoust 123(4):444–455CrossRef Hashemi S, Richard M (2001) Natural frequencies of rotating uniform beams with coriolis effects. J Vib Acoust 123(4):444–455CrossRef
13.
go back to reference Hodges DH (1981) An approximate formula for the fundamental frequency of a uniform rotating beam clamped off the axis of rotation. Tech. rep, Army Research and Technology Labs Moffett Field CA Aeromechanics Lab Hodges DH (1981) An approximate formula for the fundamental frequency of a uniform rotating beam clamped off the axis of rotation. Tech. rep, Army Research and Technology Labs Moffett Field CA Aeromechanics Lab
14.
go back to reference Hsu MH (2009) Vibration analysis of pre-twisted beams using the spline collocation method. J Mar Sci Technol 17(2):106–115 Hsu MH (2009) Vibration analysis of pre-twisted beams using the spline collocation method. J Mar Sci Technol 17(2):106–115
15.
go back to reference Huseyin K (1973) The multiple-parameter perturbation technique for the analysis of non-linear systems. Int J Non-Linear Mech 8(5):431–443MathSciNetCrossRef Huseyin K (1973) The multiple-parameter perturbation technique for the analysis of non-linear systems. Int J Non-Linear Mech 8(5):431–443MathSciNetCrossRef
16.
go back to reference Karami G, Farshad M, Banan M (1991) Pretwisted rods- an efficient finite element modelling. Finite Elem Anal Des 9(1):77–85CrossRef Karami G, Farshad M, Banan M (1991) Pretwisted rods- an efficient finite element modelling. Finite Elem Anal Des 9(1):77–85CrossRef
17.
go back to reference Kim H, Yoo HH, Chung J (2013) Dynamic model for free vibration and response analysis of rotating beams. J Sound Vib 332(22):5917–5928CrossRef Kim H, Yoo HH, Chung J (2013) Dynamic model for free vibration and response analysis of rotating beams. J Sound Vib 332(22):5917–5928CrossRef
18.
go back to reference Kunte M, Sarkar A, Sonti V (2010) Generalized asymptotic expansions for coupled wavenumbers in fluid-filled cylindrical shells. J Sound Vib 329(25):5356–5374CrossRef Kunte M, Sarkar A, Sonti V (2010) Generalized asymptotic expansions for coupled wavenumbers in fluid-filled cylindrical shells. J Sound Vib 329(25):5356–5374CrossRef
19.
go back to reference Kunte M, Sarkar A, Sonti V (2011) Generalized asymptotic expansions for the wavenumbers in infinite flexible in vacuo orthotropic cylindrical shells. J Sound Vib 330(23):5628–5643CrossRef Kunte M, Sarkar A, Sonti V (2011) Generalized asymptotic expansions for the wavenumbers in infinite flexible in vacuo orthotropic cylindrical shells. J Sound Vib 330(23):5628–5643CrossRef
20.
go back to reference Ladde G, Šiljak D (1983) Multiparameter singular perturbations of linear systems with multiple time scales. Automatica 19(4):385–394MathSciNetCrossRef Ladde G, Šiljak D (1983) Multiparameter singular perturbations of linear systems with multiple time scales. Automatica 19(4):385–394MathSciNetCrossRef
21.
go back to reference Lee SY, Kuo YH (1991) Bending frequency of a rotating beam with an elastically restrained root. J Appl Mech 58(1):209–214CrossRef Lee SY, Kuo YH (1991) Bending frequency of a rotating beam with an elastically restrained root. J Appl Mech 58(1):209–214CrossRef
22.
go back to reference Lee SY, Sheu JJ (2007) Free vibrations of a rotating inclined beam. J Appl Mech 74(3):406–414CrossRef Lee SY, Sheu JJ (2007) Free vibrations of a rotating inclined beam. J Appl Mech 74(3):406–414CrossRef
23.
go back to reference Lin S (2001) The instability and vibration of rotating beams with arbitrary pretwist and an elastically restrained root. J Appl Mech 68(6):844–853CrossRef Lin S (2001) The instability and vibration of rotating beams with arbitrary pretwist and an elastically restrained root. J Appl Mech 68(6):844–853CrossRef
24.
go back to reference Lo H, Goldberg J, Bogdanoff J (1960) Effect of small hub-radius change on bending frequencies of a rotating beam. J Appl Mech 27(3):548–550CrossRef Lo H, Goldberg J, Bogdanoff J (1960) Effect of small hub-radius change on bending frequencies of a rotating beam. J Appl Mech 27(3):548–550CrossRef
25.
go back to reference Naguleswaran S (1994) Lateral vibration of a centrifugally tensioned uniform Euler–Bernoulli beam. J Sound Vib 176(5):613–624CrossRef Naguleswaran S (1994) Lateral vibration of a centrifugally tensioned uniform Euler–Bernoulli beam. J Sound Vib 176(5):613–624CrossRef
26.
go back to reference Nayfeh A (2011) Introduction to perturbation techniques. Wiley, New JerseyMATH Nayfeh A (2011) Introduction to perturbation techniques. Wiley, New JerseyMATH
27.
go back to reference Putter S, Manor H (1978) Natural frequencies of radial rotating beams. J Sound Vib 56(2):175–185CrossRef Putter S, Manor H (1978) Natural frequencies of radial rotating beams. J Sound Vib 56(2):175–185CrossRef
28.
go back to reference Rao J (1991) Turbomachine blade vibration. New Age International, New Delhi Rao J (1991) Turbomachine blade vibration. New Age International, New Delhi
29.
go back to reference Sarkar K, Ganguli R (2013) Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition. Meccanica 48(7):1661–1676MathSciNetCrossRef Sarkar K, Ganguli R (2013) Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition. Meccanica 48(7):1661–1676MathSciNetCrossRef
30.
31.
go back to reference Sisto F, Chang A (1984) A finite element for vibration analysis of twisted blades based on beam theory. AIAA J 22(11):1646–1651CrossRef Sisto F, Chang A (1984) A finite element for vibration analysis of twisted blades based on beam theory. AIAA J 22(11):1646–1651CrossRef
32.
go back to reference Slyper H (1962) Coupled bending vibrations of pretwisted cantilever beams. J Mech Eng Sci 4(4):365–379CrossRef Slyper H (1962) Coupled bending vibrations of pretwisted cantilever beams. J Mech Eng Sci 4(4):365–379CrossRef
33.
go back to reference Swaminathan M, Rao J (1977) Vibrations of rotating, pretwisted and tapered blades. Mech Mach Theory 12(4):331–337CrossRef Swaminathan M, Rao J (1977) Vibrations of rotating, pretwisted and tapered blades. Mech Mach Theory 12(4):331–337CrossRef
34.
go back to reference Tang AY, Li XF, Wu JX, Lee K (2015) Flapwise bending vibration of rotating tapered Rayleigh cantilever beams. J Constr Steel Res 112:1–9CrossRef Tang AY, Li XF, Wu JX, Lee K (2015) Flapwise bending vibration of rotating tapered Rayleigh cantilever beams. J Constr Steel Res 112:1–9CrossRef
35.
go back to reference Thomson W (2018) Theory of vibration with applications. CRC Press, Boca RatonCrossRef Thomson W (2018) Theory of vibration with applications. CRC Press, Boca RatonCrossRef
37.
go back to reference Wright A, Smith C, Thresher R, Wang J (1982) Vibration modes of centrifugally stiffened beams. J Appl Mech 49(1):197–202CrossRef Wright A, Smith C, Thresher R, Wang J (1982) Vibration modes of centrifugally stiffened beams. J Appl Mech 49(1):197–202CrossRef
38.
go back to reference Yardimoglu B, Yildirim T (2004) Finite element model for vibration analysis of pre-twisted timoshenko beam. J Sound Vib 273(4–5):741–754CrossRef Yardimoglu B, Yildirim T (2004) Finite element model for vibration analysis of pre-twisted timoshenko beam. J Sound Vib 273(4–5):741–754CrossRef
39.
go back to reference Yoo H, Shin S (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212(5):807–828CrossRef Yoo H, Shin S (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212(5):807–828CrossRef
40.
go back to reference Yoo H, Kwak J, Chung J (2001a) Vibration analysis of rotating pre-twisted blades with a concentrated mass. J Sound Vib 240(5):891–908CrossRef Yoo H, Kwak J, Chung J (2001a) Vibration analysis of rotating pre-twisted blades with a concentrated mass. J Sound Vib 240(5):891–908CrossRef
41.
go back to reference Yoo HH, Park JH, Park J (2001b) Vibration analysis of rotating pre-twisted blades. Comput Struct 79(19):1811–1819CrossRef Yoo HH, Park JH, Park J (2001b) Vibration analysis of rotating pre-twisted blades. Comput Struct 79(19):1811–1819CrossRef
42.
go back to reference ANSYS\(^{\textregistered }\) Academic Research Mechanical, Release 18.1, ANSYS, Inc ANSYS\(^{\textregistered }\) Academic Research Mechanical, Release 18.1, ANSYS, Inc
Metadata
Title
Natural frequencies of rotating twisted beams: a perturbation method based approach
Authors
Ajinkya Baxy
Abhijit Sarkar
Publication date
17-09-2020
Publisher
Springer Netherlands
Published in
Meccanica / Issue 10/2020
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01238-7

Other articles of this Issue 10/2020

Meccanica 10/2020 Go to the issue

Premium Partners