Skip to main content
Top
Published in: Meccanica 10/2020

14-10-2020 | Original papers

Effect of gravity modulation on linear, weakly-nonlinear and local-nonlinear stability analyses of stationary double-diffusive convection in a dielectric liquid

Authors: P. G. Siddheshwar, B. R. Revathi, C. Kanchana

Published in: Meccanica | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper deals with the study of effect of gravity modulation on double-diffusive convection in a dielectric liquid for the cases of rigid-rigid and free-free boundaries. Using a modified Venezian approach, expressions for the Rayleigh number and its correction are determined. Fourier–Galerkin expansion is employed for a weakly nonlinear stability analysis and this results in a fifth-order Lorenz system that retains the structure of the classical one in the limiting case. A local nonlinear stability analysis using the method of multiscales leads to the time-periodic Ginzburg–Landau equation from the time-periodic generalized Lorenz system and the numerical solution of this simpler equation helps in quantifying unsteady heat and mass transports. Influence of various non-dimensional parameters (Lewis number, solutal Rayleigh number, electrical Rayleigh number and Prandtl number), amplitude and frequency of gravity modulation on onset of convection and heat and mass transports is discussed. The study reveals that the influence of gravity modulation is to stabilize the system and enhance heat and mass transports. The results from free-free boundaries are qualitatively similar to that of rigid-rigid boundaries. Further, it is shown that in the case of free-free boundaries the heat and mass transports are less compared to those of rigid-rigid boundaries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shevtsova V, Ryzhkov II, Melnikov DE, Gaponenko YA, Mialdun A (2010) Experimental and theoretical study of vibration-induced thermal convection in low gravity. J Fluid Mech 648:53–82MathSciNetCrossRef Shevtsova V, Ryzhkov II, Melnikov DE, Gaponenko YA, Mialdun A (2010) Experimental and theoretical study of vibration-induced thermal convection in low gravity. J Fluid Mech 648:53–82MathSciNetCrossRef
2.
go back to reference Shevtsova V (2010) IVIDIL experiment on board the ISS. Adv Space Res 46:672–679CrossRef Shevtsova V (2010) IVIDIL experiment on board the ISS. Adv Space Res 46:672–679CrossRef
3.
go back to reference Mazzoni S, Shevtsova V, Mialdun A, Melnikov D, Gaponenko Y, Lyubimova T, Saghir MZ (2010) Vibrating liquids in space. Europhys News 41:14–16CrossRef Mazzoni S, Shevtsova V, Mialdun A, Melnikov D, Gaponenko Y, Lyubimova T, Saghir MZ (2010) Vibrating liquids in space. Europhys News 41:14–16CrossRef
4.
go back to reference Mialdun A, Ryzhkov II, Melnikov DE, Shevtsova V (2008) Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment. Phys Rev Lett 101:084501CrossRef Mialdun A, Ryzhkov II, Melnikov DE, Shevtsova V (2008) Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment. Phys Rev Lett 101:084501CrossRef
5.
go back to reference Rogers JL, Schatz MF, Bougie JL, Swift JB (2000) Rayleigh–Bénard convection in a vertically oscillated fluid layer. Phys Rev Lett 84(1):87–90CrossRef Rogers JL, Schatz MF, Bougie JL, Swift JB (2000) Rayleigh–Bénard convection in a vertically oscillated fluid layer. Phys Rev Lett 84(1):87–90CrossRef
6.
go back to reference Rogers JL, Pesch W, Schatz MF (2003) Pattern formation in vertically oscillated convection. Nonlinearity 16(1):C1–C10MathSciNetCrossRef Rogers JL, Pesch W, Schatz MF (2003) Pattern formation in vertically oscillated convection. Nonlinearity 16(1):C1–C10MathSciNetCrossRef
7.
go back to reference Ishikawa M, Kamei S (1993) Instabilities of natural convection induced by gravity modulation. Microgravity Sci Technol 6(4):252–259 Ishikawa M, Kamei S (1993) Instabilities of natural convection induced by gravity modulation. Microgravity Sci Technol 6(4):252–259
8.
go back to reference Swaminathan A, Garrett SL, Poese ME, Smith RWM (2018) Dynamic stabilization of the Rayleigh–Bénard instability by acceleration modulation. J Acous Soc Am 144:2334–2343CrossRef Swaminathan A, Garrett SL, Poese ME, Smith RWM (2018) Dynamic stabilization of the Rayleigh–Bénard instability by acceleration modulation. J Acous Soc Am 144:2334–2343CrossRef
10.
go back to reference Wang DJ, Katory M, Li YS (2002) Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices. Ocean Eng 29:871–885CrossRef Wang DJ, Katory M, Li YS (2002) Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices. Ocean Eng 29:871–885CrossRef
11.
go back to reference Gershuni GZ, Zhukhovitskii EM, Iurkov IS (1970) On convective stability in the presence of periodically varying parameter. J Appl Math Mech 34:470–480 Gershuni GZ, Zhukhovitskii EM, Iurkov IS (1970) On convective stability in the presence of periodically varying parameter. J Appl Math Mech 34:470–480
12.
go back to reference Gresho PM, Sani RL (1970) The effects of gravity modulation on the stability of a heated fluid layer. J Fluid Mech 40:783–806CrossRef Gresho PM, Sani RL (1970) The effects of gravity modulation on the stability of a heated fluid layer. J Fluid Mech 40:783–806CrossRef
13.
go back to reference Gershuni GZ, Zhukhovitskii EM (1976) Convection instability in incompressible fluid. Keter Publishing House, Virginia Gershuni GZ, Zhukhovitskii EM (1976) Convection instability in incompressible fluid. Keter Publishing House, Virginia
14.
go back to reference Biringen S, Peltier LJ (1990) Computational study of 3-D Bénard convection with gravitational modulation. Phys Fluids A 2:279–283CrossRef Biringen S, Peltier LJ (1990) Computational study of 3-D Bénard convection with gravitational modulation. Phys Fluids A 2:279–283CrossRef
15.
go back to reference Venezian G (1969) Effect of modulation on the onset of thermal convection. J Fluid Mech 35:243–254CrossRef Venezian G (1969) Effect of modulation on the onset of thermal convection. J Fluid Mech 35:243–254CrossRef
16.
go back to reference Siddheshwar PG (2010) A series solution for the Ginzburg-Landau equation with a time-periodic coefficient. Appl Math 1(06):542–554CrossRef Siddheshwar PG (2010) A series solution for the Ginzburg-Landau equation with a time-periodic coefficient. Appl Math 1(06):542–554CrossRef
17.
go back to reference Siddheshwar PG, Kanchana C (2018) Effect of trigonometric sine, square and triangular wave-type time-periodic gravity-aligned oscillations on Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids. Meccanica 54:451–469CrossRef Siddheshwar PG, Kanchana C (2018) Effect of trigonometric sine, square and triangular wave-type time-periodic gravity-aligned oscillations on Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids. Meccanica 54:451–469CrossRef
18.
go back to reference Siddheshwar PG, Meenakshi N (2019) Comparison of the effects of three types of time-periodic body force on linear and non-linear stability of convection in nanoliquids. Eur J Mech B/Fluids 77:221–239MathSciNetCrossRef Siddheshwar PG, Meenakshi N (2019) Comparison of the effects of three types of time-periodic body force on linear and non-linear stability of convection in nanoliquids. Eur J Mech B/Fluids 77:221–239MathSciNetCrossRef
19.
go back to reference Turnbull RJ (1969) Effect of dielectrophoretic forces on the Bénard instability. Phys Fluids 12:1809–1815CrossRef Turnbull RJ (1969) Effect of dielectrophoretic forces on the Bénard instability. Phys Fluids 12:1809–1815CrossRef
20.
go back to reference Roberts PH (1969) Electrohydrodynamic convection. Q J Mech Appl Math 22:211–220CrossRef Roberts PH (1969) Electrohydrodynamic convection. Q J Mech Appl Math 22:211–220CrossRef
21.
go back to reference Stiles PJ (1991) Electrothermal convection in dielectric liquids. Chem Phys Lett 179:311–315CrossRef Stiles PJ (1991) Electrothermal convection in dielectric liquids. Chem Phys Lett 179:311–315CrossRef
22.
go back to reference Jolly DC, Melcher JR (1970) Electroconvective Instability in a Fluid Layer. Proc R Soc A 314:269–283 Jolly DC, Melcher JR (1970) Electroconvective Instability in a Fluid Layer. Proc R Soc A 314:269–283
23.
go back to reference Siddheshwar PG (2002) Oscillatory convection in viscoelastic, ferromagnetic/dielectric liquids. Int J Modern Phys B 16:2629–2635CrossRef Siddheshwar PG (2002) Oscillatory convection in viscoelastic, ferromagnetic/dielectric liquids. Int J Modern Phys B 16:2629–2635CrossRef
24.
go back to reference Siddheshwar PG, Annamma A (2007) Rayleigh–Bénard convection in a dielectric liquid: time-periodic body force. Proc Appl Math Mech 7:2100083–21300084CrossRef Siddheshwar PG, Annamma A (2007) Rayleigh–Bénard convection in a dielectric liquid: time-periodic body force. Proc Appl Math Mech 7:2100083–21300084CrossRef
25.
go back to reference Siddheshwar PG, Abraham A (2009) Rayleigh–Bénard convection in a dielectric liquid: imposed time-periodic boundary temperatures. Chamchuri J Math 12:105–121MATH Siddheshwar PG, Abraham A (2009) Rayleigh–Bénard convection in a dielectric liquid: imposed time-periodic boundary temperatures. Chamchuri J Math 12:105–121MATH
26.
go back to reference Siddheshwar PG, Radhakrishna D (2012) Linear and nonlinear electroconvection under AC electric field. Commun Nonlinear Sci Numer Simul 17:2883–2895MathSciNetCrossRef Siddheshwar PG, Radhakrishna D (2012) Linear and nonlinear electroconvection under AC electric field. Commun Nonlinear Sci Numer Simul 17:2883–2895MathSciNetCrossRef
27.
go back to reference Siddheshwar PG, Uma D, Bhavya S (2019) Effects of variable viscosity and temperature modulation on linear Rayleigh–Bénard convection in Newtonian dielectric liquid. Appl Math Mech 40:1601–1614MathSciNetCrossRef Siddheshwar PG, Uma D, Bhavya S (2019) Effects of variable viscosity and temperature modulation on linear Rayleigh–Bénard convection in Newtonian dielectric liquid. Appl Math Mech 40:1601–1614MathSciNetCrossRef
28.
go back to reference Siddheshwar PG, Uma D, Bhavya S (2019) Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field dependent viscosity. Eur Phys J Plus 135:138CrossRef Siddheshwar PG, Uma D, Bhavya S (2019) Linear and nonlinear stability of thermal convection in Newtonian dielectric liquid with field dependent viscosity. Eur Phys J Plus 135:138CrossRef
29.
go back to reference Siddheshwar PG, Revathi BR (2013) Effect of Gravity modulation on weakly Nonlinear stability of stationary convection in a dielectric liquid. Int J Math Comput Phys Electron Comput Eng 7(1):119–124 Siddheshwar PG, Revathi BR (2013) Effect of Gravity modulation on weakly Nonlinear stability of stationary convection in a dielectric liquid. Int J Math Comput Phys Electron Comput Eng 7(1):119–124
30.
go back to reference Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, LondonCrossRef Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, LondonCrossRef
31.
32.
34.
35.
go back to reference Yu Y, Chan CL, Chen CF (2007) Effect of gravity modulation on the stability of a horizontal double-diffusive layer. J Fluid Mech 589:183–213CrossRef Yu Y, Chan CL, Chen CF (2007) Effect of gravity modulation on the stability of a horizontal double-diffusive layer. J Fluid Mech 589:183–213CrossRef
36.
go back to reference Siddheshwar PG, Bhadauria BS, Srivastava A (2012) An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation. Transp Porous Media 91:585–604MathSciNetCrossRef Siddheshwar PG, Bhadauria BS, Srivastava A (2012) An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation. Transp Porous Media 91:585–604MathSciNetCrossRef
37.
go back to reference Bhadauria BS, Kiran P (2015) Weak nonlinear double diffusive Magneto-Convection in a newtonian liquid under gravity modulation. J Appl Fluid Mech 8(4):735–746CrossRef Bhadauria BS, Kiran P (2015) Weak nonlinear double diffusive Magneto-Convection in a newtonian liquid under gravity modulation. J Appl Fluid Mech 8(4):735–746CrossRef
38.
go back to reference Siddheshwar PG, Kanchana C (2017) Unicellular unsteady Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids occupying enclosures: new findings. Int J Mech Sci 131:1061–1072CrossRef Siddheshwar PG, Kanchana C (2017) Unicellular unsteady Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids occupying enclosures: new findings. Int J Mech Sci 131:1061–1072CrossRef
40.
go back to reference Siddheshwar PG, Shivakumara BN, Zhao Y, Kanchana C (2019) Rayleigh–Bénard convection in a Newtonian liquid bounded by rigid isothermal boundaries. Appl Math Comput 371:124942-1-15MATH Siddheshwar PG, Shivakumara BN, Zhao Y, Kanchana C (2019) Rayleigh–Bénard convection in a Newtonian liquid bounded by rigid isothermal boundaries. Appl Math Comput 371:124942-1-15MATH
41.
go back to reference Kanchana C, Siddheshwar PG, Zhao Y (2019) A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries. Eur Phys J Special Topics 228:2511–2530CrossRef Kanchana C, Siddheshwar PG, Zhao Y (2019) A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries. Eur Phys J Special Topics 228:2511–2530CrossRef
Metadata
Title
Effect of gravity modulation on linear, weakly-nonlinear and local-nonlinear stability analyses of stationary double-diffusive convection in a dielectric liquid
Authors
P. G. Siddheshwar
B. R. Revathi
C. Kanchana
Publication date
14-10-2020
Publisher
Springer Netherlands
Published in
Meccanica / Issue 10/2020
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01241-y

Other articles of this Issue 10/2020

Meccanica 10/2020 Go to the issue

Premium Partners