Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Nature Knows Better

Authors : Viktor Józsa, Róbert Kovács

Published in: Solving Problems in Thermal Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter focuses on the experimental background of extended constitutive equations, especially on non-Fourier heat conduction. Although these phenomena are not common in engineering practice nowadays, it conveys essential aspects and provides guidance for ‘special’ thermal and coupled problems. It is anticipated that the advanced material models will appear in the commercial codes as the thermal modeling of micro and nano-scaled objects become increasingly important.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Since the heat flux \(\mathbf q\) becomes a state variable in the generalized equations, independently of the approach, it is worth to mention the possible \(\mathbf q\)-dependence of the material parameters.
 
2
We refer to it as ‘temperature representation’. If the temperature is eliminated, then it is called ‘heat flux representation’.
 
3
Naturally, the scaling property appears in large scales, too, but it is less frequent in the practical applications and may be important merely for geological applications.
 
4
Assuming adiabatic boundary conditions on both sides with non-uniform initial condition to model the initial (and quick) absorption of the heat pulse.
 
5
As a philosophical question to the Reader: is it possible to interpret the internal variable as a measure of deformation to obtain a hyperbolic heat equation?
 
6
Recall the Fourier resonance condition!
 
7
We note here the difference between the apparent and theoretical (calculated) material parameters. It has great importance in some scaling properties that will be discussed at the end of this chapter.
 
8
In some papers, the MCV equation is considered to be thermodynamically incompatible. In general, this interpretation depends on the space of state variables: one must include the heat flux as an independent variable, then the anomalies around the entropy production disappear.
 
9
Analogously to the GK equation, it can be interpreted as a nonlocal term.
 
10
The deformedness in a 1D case is defined as \( D=\ln (l/l_r)\) with \(l_r\) being a relaxed length, characterizing the unloaded state of the material. This is an appropriate thermodynamic state variable. The engineering strain is \(\varepsilon =(l-l_0)/l_0\) in which \(l_0\) is the length at the initial time instant. Since \(\varepsilon \) is a reference time dependent, it is not a good thermodynamic state variable [293]. Unfortunately, D is not directly measurable.
 
Literature
1.
go back to reference J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)MATHCrossRef J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)MATHCrossRef
2.
go back to reference Gy. Gróf, Notes on using temperature-dependent thermal diffusivity–forgotten rules. J. Therm. Anal. Calorim. 132(2), 1389–1397 (2018) Gy. Gróf, Notes on using temperature-dependent thermal diffusivity–forgotten rules. J. Therm. Anal. Calorim. 132(2), 1389–1397 (2018)
3.
go back to reference S. Both, B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, R. Kovács, P. Ván, J. Verhás, Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41(1), 41–48 (2016) S. Both, B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, R. Kovács, P. Ván, J. Verhás, Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41(1), 41–48 (2016)
4.
go back to reference P. Ván, A. Berezovski, T. Fülöp, Gy. Gróf, R. Kovács, Á. Lovas, J. Verhás, Guyer-Krumhansl-type heat conduction at room temperature. EPL, 118(5), 50005 (2017), arXiv:1704.00341v1CrossRef P. Ván, A. Berezovski, T. Fülöp, Gy. Gróf, R. Kovács, Á. Lovas, J. Verhás, Guyer-Krumhansl-type heat conduction at room temperature. EPL, 118(5), 50005 (2017), arXiv:​1704.​00341v1CrossRef
5.
go back to reference W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)CrossRef W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)CrossRef
6.
go back to reference H.M. James, Some extensions of the flash method of measuring thermal diffusivity. J. Appl. Phys. 51(9), 4666–4672 (1980)CrossRef H.M. James, Some extensions of the flash method of measuring thermal diffusivity. J. Appl. Phys. 51(9), 4666–4672 (1980)CrossRef
7.
go back to reference Gy.I. Gróf, Homogén és kétrétegű minták hőmérsékletvezetési tényezőjének mérése flash módszerrel (2002) Gy.I. Gróf, Homogén és kétrétegű minták hőmérsékletvezetési tényezőjének mérése flash módszerrel (2002)
8.
go back to reference T. Fülöp, R. Kovács,Á Lovas, Á. Rieth, T. Fodor, M. Szücs, P. Ván, Gy. Gróf, Emergence of non-Fourier hierarchies. Entropy 20(11), 832 (2018), ArXiv: 1808.06858CrossRef T. Fülöp, R. Kovács,Á Lovas, Á. Rieth, T. Fodor, M. Szücs, P. Ván, Gy. Gróf, Emergence of non-Fourier hierarchies. Entropy 20(11), 832 (2018), ArXiv:​ 1808.​06858CrossRef
9.
go back to reference H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (1959) H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (1959)
10.
go back to reference S.J. Farlow, Partial Differential Equations for Scientists and Engineers (Courier Corporation, 1993) S.J. Farlow, Partial Differential Equations for Scientists and Engineers (Courier Corporation, 1993)
11.
go back to reference M. Necati Ozisik, Heat Conduction (Wiley, New York, 1993) M. Necati Ozisik, Heat Conduction (Wiley, New York, 1993)
12.
go back to reference K.V. Zhukovsky, Exact solution of Guyer-Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf. 96, 132–144 (2016)CrossRef K.V. Zhukovsky, Exact solution of Guyer-Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf. 96, 132–144 (2016)CrossRef
13.
go back to reference K.V. Zhukovsky, Operational approach and solutions of hyperbolic heat conduction equations. Axioms 5(4), 28 (2016)CrossRef K.V. Zhukovsky, Operational approach and solutions of hyperbolic heat conduction equations. Axioms 5(4), 28 (2016)CrossRef
14.
go back to reference K.V. Zhukovsky, H.M. Srivastava, Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput. 293, 423–437 (2017)MathSciNetMATH K.V. Zhukovsky, H.M. Srivastava, Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput. 293, 423–437 (2017)MathSciNetMATH
15.
go back to reference K. Zhukovsky, Violation of the maximum principle and negative solutions for pulse propagation in Guyer-Krumhansl model. Int. J. Heat Mass Transf. 98, 523–529 (2016)CrossRef K. Zhukovsky, Violation of the maximum principle and negative solutions for pulse propagation in Guyer-Krumhansl model. Int. J. Heat Mass Transf. 98, 523–529 (2016)CrossRef
16.
go back to reference R. Kovács, Analytic solution of Guyer-Krumhansl equation for laser flash experiments. Int. J. Heat Mass Transf. 127, 631–636 (2018)CrossRef R. Kovács, Analytic solution of Guyer-Krumhansl equation for laser flash experiments. Int. J. Heat Mass Transf. 127, 631–636 (2018)CrossRef
17.
go back to reference R. Kovács, P. Ván, Thermodynamical consistency of the Dual Phase Lag heat conduction equation. Contin. Mech. Thermodyn. 1–8 (2017) R. Kovács, P. Ván, Thermodynamical consistency of the Dual Phase Lag heat conduction equation. Contin. Mech. Thermodyn. 1–8 (2017)
18.
19.
go back to reference L. Landau, Two-fluid model of liquid Helium II. J. Phys. USSR 5, 71 (1941) L. Landau, Two-fluid model of liquid Helium II. J. Phys. USSR 5, 71 (1941)
20.
21.
go back to reference L. Landau, On the theory of superfluidity of Helium II. J. Phys. 11(1), 91–92 (1947)MathSciNet L. Landau, On the theory of superfluidity of Helium II. J. Phys. 11(1), 91–92 (1947)MathSciNet
22.
go back to reference S. Balibar, Laszlo Tisza and the two-fluid model of superfluidity. Comptes Rendus Phys. 18(9–10), 586–591 (2017)CrossRef S. Balibar, Laszlo Tisza and the two-fluid model of superfluidity. Comptes Rendus Phys. 18(9–10), 586–591 (2017)CrossRef
23.
go back to reference V. Peshkov, Second sound in Helium II. J. Phys. (Moscow) 381(8) (1944) V. Peshkov, Second sound in Helium II. J. Phys. (Moscow) 381(8) (1944)
24.
go back to reference P.L. Kapitza, Heat transfer and superfluidity of helium II. Phys. Rev. 60(4), 354 (1941)CrossRef P.L. Kapitza, Heat transfer and superfluidity of helium II. Phys. Rev. 60(4), 354 (1941)CrossRef
25.
go back to reference F. London, Superfluids, Structure of Matter Series (Wiley, New York, 1954)MATH F. London, Superfluids, Structure of Matter Series (Wiley, New York, 1954)MATH
26.
go back to reference R.J. Donnelly, The two-fluid theory and second sound in liquid Helium. Phys. Today 62(10), 34–39 (2009)CrossRef R.J. Donnelly, The two-fluid theory and second sound in liquid Helium. Phys. Today 62(10), 34–39 (2009)CrossRef
27.
go back to reference P.C. Hohenberg, P.C. Martin, Microscopic theory of superfluid helium. Ann. Phys. 34(2), 291–359 (1965)CrossRef P.C. Hohenberg, P.C. Martin, Microscopic theory of superfluid helium. Ann. Phys. 34(2), 291–359 (1965)CrossRef
28.
go back to reference P.W. Anderson, Considerations on the flow of superfluid helium. Rev. Mod. Phys. 38(2), 298 (1966)CrossRef P.W. Anderson, Considerations on the flow of superfluid helium. Rev. Mod. Phys. 38(2), 298 (1966)CrossRef
29.
go back to reference S. J. Putterman. Superfluid hydrodynamics. In Amsterdam, North-Holland Publishing Co.; New York, American Elsevier Publishing Co., Inc.(North-Holland Series in Low Temperature Physics. Volume 3), 1974. 464 p., volume 3, 1974 S. J. Putterman. Superfluid hydrodynamics. In Amsterdam, North-Holland Publishing Co.; New York, American Elsevier Publishing Co., Inc.(North-Holland Series in Low Temperature Physics. Volume 3), 1974. 464 p., volume 3, 1974
30.
go back to reference G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium: visualization of quantized vortices. Nature 441(7093), 588 (2006)CrossRef G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium: visualization of quantized vortices. Nature 441(7093), 588 (2006)CrossRef
31.
go back to reference L. Dresner, Transient Heat Transfer in Superfluid Helium, vol. 27 (Plenum Press, New York, 1982) L. Dresner, Transient Heat Transfer in Superfluid Helium, vol. 27 (Plenum Press, New York, 1982)
32.
go back to reference L. Dresner, Transient Heat Transfer in Superfluid Helium- Part II (Springer, Berlin, 1984) L. Dresner, Transient Heat Transfer in Superfluid Helium- Part II (Springer, Berlin, 1984)
33.
go back to reference E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase. Nature 427(6971), 225 (2004)CrossRef E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase. Nature 427(6971), 225 (2004)CrossRef
34.
go back to reference D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Courier Corporation, 2013) D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Courier Corporation, 2013)
35.
go back to reference M.S. Mongiovi, D. Jou, M. Sciacca, Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. (2018) M.S. Mongiovi, D. Jou, M. Sciacca, Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. (2018)
36.
go back to reference J.R. Pellam, Investigations of pulsed second sound in liquid helium II. Phys. Rev. 75(8), 1183 (1949)CrossRef J.R. Pellam, Investigations of pulsed second sound in liquid helium II. Phys. Rev. 75(8), 1183 (1949)CrossRef
37.
go back to reference V. Narayanamurti, R.C. Dynes, K. Andres, Propagation of sound and second sound using heat pulses. Phys. Rev. B 11(7), 2500–2524 (1975)CrossRef V. Narayanamurti, R.C. Dynes, K. Andres, Propagation of sound and second sound using heat pulses. Phys. Rev. B 11(7), 2500–2524 (1975)CrossRef
38.
go back to reference C.T. Lane, H. Fairbank, H. Schultz, W. Fairbank, “Second sound” in liquid Helium II. Phys. Rev. 70(5–6), 431 (1946)CrossRef C.T. Lane, H. Fairbank, H. Schultz, W. Fairbank, “Second sound” in liquid Helium II. Phys. Rev. 70(5–6), 431 (1946)CrossRef
39.
go back to reference C.T. Lane, H.A. Fairbank, W.M. Fairbank, Second sound in liquid Helium II. Phys. Rev. 71, 600–605 (1947)CrossRef C.T. Lane, H.A. Fairbank, W.M. Fairbank, Second sound in liquid Helium II. Phys. Rev. 71, 600–605 (1947)CrossRef
40.
go back to reference R.D. Maurer, M.A. Herlin, Second sound velocity in Helium II. Phys. Rev. 76(7), 948 (1949)CrossRef R.D. Maurer, M.A. Herlin, Second sound velocity in Helium II. Phys. Rev. 76(7), 948 (1949)CrossRef
41.
go back to reference J.C. Ward, J. Wilks, The velocity of second sound in liquid Helium near the absolute zero. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(326), 314–316 (1951)CrossRef J.C. Ward, J. Wilks, The velocity of second sound in liquid Helium near the absolute zero. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(326), 314–316 (1951)CrossRef
42.
go back to reference K.R. Atkins, D.V. Osborne, The velocity of second sound below 1 K. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(321), 1078–1081 (1950)CrossRef K.R. Atkins, D.V. Osborne, The velocity of second sound below 1 K. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(321), 1078–1081 (1950)CrossRef
43.
44.
go back to reference R.A. Guyer, J.A. Krumhansl, Dispersion relation for second sound in solids. Phys. Rev. 133(5A), A1411 (1964)CrossRef R.A. Guyer, J.A. Krumhansl, Dispersion relation for second sound in solids. Phys. Rev. 133(5A), A1411 (1964)CrossRef
45.
go back to reference C.C. Ackerman, B. Bertman, H.A. Fairbank, R.A. Guyer, Second sound in solid Helium. Phys. Rev. Lett. 16(18), 789–791 (1966)CrossRef C.C. Ackerman, B. Bertman, H.A. Fairbank, R.A. Guyer, Second sound in solid Helium. Phys. Rev. Lett. 16(18), 789–791 (1966)CrossRef
46.
go back to reference R.J. Hardy, S.S. Jaswal, Velocity of second sound in NaF. Phys. Rev. B 3(12), 4385–4387 (1971)CrossRef R.J. Hardy, S.S. Jaswal, Velocity of second sound in NaF. Phys. Rev. B 3(12), 4385–4387 (1971)CrossRef
47.
go back to reference V. Narayanamurti, R.C. Dynes, Observation of second sound in bismuth. Phys. Rev. Lett. 28(22), 1461–1465 (1972)CrossRef V. Narayanamurti, R.C. Dynes, Observation of second sound in bismuth. Phys. Rev. Lett. 28(22), 1461–1465 (1972)CrossRef
48.
go back to reference H.A. Fairbank, K.H. Mueller, Propagation of second sound and heat pulses in solid helium crystals, Quantum Statistical Mechanics in the Natural Sciences (Springer, Berlin, 1974), pp. 403–411CrossRef H.A. Fairbank, K.H. Mueller, Propagation of second sound and heat pulses in solid helium crystals, Quantum Statistical Mechanics in the Natural Sciences (Springer, Berlin, 1974), pp. 403–411CrossRef
49.
go back to reference A. Sellitto, V.A. Cimmelli, D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6 (Springer, Berlin, 2016)MATHCrossRef A. Sellitto, V.A. Cimmelli, D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6 (Springer, Berlin, 2016)MATHCrossRef
50.
go back to reference Y. Guo, D. Jou, M. Wang, Macroscopic heat transport equations and heat waves in nonequilibrium states. Phys. D: Nonlinear Phenom. 342, 24–31 (2017)MathSciNetMATHCrossRef Y. Guo, D. Jou, M. Wang, Macroscopic heat transport equations and heat waves in nonequilibrium states. Phys. D: Nonlinear Phenom. 342, 24–31 (2017)MathSciNetMATHCrossRef
52.
go back to reference D.D. Joseph, L. Preziosi, Addendum to the paper on heat waves. Rev. Mod. Phys. 62(2), 375–391 (1990)CrossRef D.D. Joseph, L. Preziosi, Addendum to the paper on heat waves. Rev. Mod. Phys. 62(2), 375–391 (1990)CrossRef
53.
go back to reference P. Ván, Theories and heat pulse experiments of non-Fourier heat conduction. Commun. Appl. Ind. Math. 7(2), 150–166 (2016)MathSciNetMATH P. Ván, Theories and heat pulse experiments of non-Fourier heat conduction. Commun. Appl. Ind. Math. 7(2), 150–166 (2016)MathSciNetMATH
54.
go back to reference V.A. Cimmelli, Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34(4), 299–333 (2009)MATHCrossRef V.A. Cimmelli, Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34(4), 299–333 (2009)MATHCrossRef
55.
go back to reference V.A. Cimmelli, A. Sellitto, D. Jou, Nonlocal effects and second sound in a non-equilibrium steady state. Phys. Rev. B 79(1), 014303 (2009)CrossRef V.A. Cimmelli, A. Sellitto, D. Jou, Nonlocal effects and second sound in a non-equilibrium steady state. Phys. Rev. B 79(1), 014303 (2009)CrossRef
56.
go back to reference D. Jou, V.A. Cimmelli, Constitutive equations for heat conduction in nanosystems and non-equilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016)MathSciNetMATH D. Jou, V.A. Cimmelli, Constitutive equations for heat conduction in nanosystems and non-equilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016)MathSciNetMATH
57.
go back to reference D. Jou, I. Carlomagno, V.A. Cimmelli, A thermodynamic model for heat transport and thermal wave propagation in graded systems. Phys. E: Low-dimens. Syst. Nanostruct. 73, 242–249 (2015)CrossRef D. Jou, I. Carlomagno, V.A. Cimmelli, A thermodynamic model for heat transport and thermal wave propagation in graded systems. Phys. E: Low-dimens. Syst. Nanostruct. 73, 242–249 (2015)CrossRef
58.
go back to reference A. Sellitto, V.A. Cimmelli, D. Jou, Nonequilibrium thermodynamics and heat transport at nanoscale, Mesoscopic Theories of Heat Transport in Nanosystems (Springer International Publishing, Berlin, 2016), pp. 1–30MATHCrossRef A. Sellitto, V.A. Cimmelli, D. Jou, Nonequilibrium thermodynamics and heat transport at nanoscale, Mesoscopic Theories of Heat Transport in Nanosystems (Springer International Publishing, Berlin, 2016), pp. 1–30MATHCrossRef
59.
go back to reference I. Carlomagno, A. Sellitto, V.A. Cimmelli, Dynamical temperature and generalized heat-conduction equation. Int. J. Non-Linear Mech. 79, 76–82 (2016)CrossRef I. Carlomagno, A. Sellitto, V.A. Cimmelli, Dynamical temperature and generalized heat-conduction equation. Int. J. Non-Linear Mech. 79, 76–82 (2016)CrossRef
60.
61.
go back to reference H.E. Jackson, C.T. Walker, T.F. McNelly, Second sound in NaF. Phys. Rev. Lett. 25(1), 26–28 (1970)CrossRef H.E. Jackson, C.T. Walker, T.F. McNelly, Second sound in NaF. Phys. Rev. Lett. 25(1), 26–28 (1970)CrossRef
62.
go back to reference T.F. McNelly, S.J. Rogers, D.J. Channin, R.J. Rollefson, W.M. Goubau, G.E. Schmidt, J.A. Krumhansl, R.O. Pohl, Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24(3), 100–102 (1970)CrossRef T.F. McNelly, S.J. Rogers, D.J. Channin, R.J. Rollefson, W.M. Goubau, G.E. Schmidt, J.A. Krumhansl, R.O. Pohl, Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24(3), 100–102 (1970)CrossRef
63.
go back to reference H.E. Jackson, C.T. Walker, Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 3(4), 1428–1439 (1971)CrossRef H.E. Jackson, C.T. Walker, Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 3(4), 1428–1439 (1971)CrossRef
64.
go back to reference T.F. McNelly, Second Sound and Anharmonic Processes in Isotopically Pure Alkali-Halides, Ph.D. Thesis, Cornell University (1974) T.F. McNelly, Second Sound and Anharmonic Processes in Isotopically Pure Alkali-Halides, Ph.D. Thesis, Cornell University (1974)
65.
go back to reference C.T. Walker, Thermal conductivity of some alkali halides containing F centers. Phys. Rev. 132(5), 1963–1975 (1963)CrossRef C.T. Walker, Thermal conductivity of some alkali halides containing F centers. Phys. Rev. 132(5), 1963–1975 (1963)CrossRef
66.
go back to reference L.P. Mezhov-Deglin, Measurement of the thermal conductivity of crystalline he4. Sov. Phys. JETP 22, 47 (1966) L.P. Mezhov-Deglin, Measurement of the thermal conductivity of crystalline he4. Sov. Phys. JETP 22, 47 (1966)
67.
go back to reference P.D. Thacher, Effect of boundaries and isotopes on the thermal conductivity of LiF. Phys. Rev. 156(3), 975 (1967)CrossRef P.D. Thacher, Effect of boundaries and isotopes on the thermal conductivity of LiF. Phys. Rev. 156(3), 975 (1967)CrossRef
68.
go back to reference S.B. Trickey, W.P. Kirk, E.D. Adams, Thermodynamic, elastic, and magnetic properties of solid helium. Rev. Mod. Phys. 44(4), 668 (1972)CrossRef S.B. Trickey, W.P. Kirk, E.D. Adams, Thermodynamic, elastic, and magnetic properties of solid helium. Rev. Mod. Phys. 44(4), 668 (1972)CrossRef
69.
go back to reference R.H. Crepeau, O. Heybey, D.M. Lee, S.A. Strauss, Sound propagation in hcp solid helium crystals of known orientation. Phys. Rev. A 3(3), 1162 (1971)CrossRef R.H. Crepeau, O. Heybey, D.M. Lee, S.A. Strauss, Sound propagation in hcp solid helium crystals of known orientation. Phys. Rev. A 3(3), 1162 (1971)CrossRef
70.
go back to reference P.V.E. McClintock, An apparatus for preparing isotopically pure he4. Cryogenics 18(4), 201–208 (1978)CrossRef P.V.E. McClintock, An apparatus for preparing isotopically pure he4. Cryogenics 18(4), 201–208 (1978)CrossRef
71.
72.
go back to reference S.J. Rogers, Transport of heat and approach to second sound in some isotropically pure alkali-halide crystals. Phys. Rev. B 3(4), 1440 (1971)CrossRef S.J. Rogers, Transport of heat and approach to second sound in some isotropically pure alkali-halide crystals. Phys. Rev. B 3(4), 1440 (1971)CrossRef
73.
go back to reference S.J. Rogers, Second sound in solids: the effects of collinear and non-collinear three phonon processes. Le Journal de Physique Colloques 33(4), 4–111 (1972) S.J. Rogers, Second sound in solids: the effects of collinear and non-collinear three phonon processes. Le Journal de Physique Colloques 33(4), 4–111 (1972)
75.
go back to reference K. Frischmuth, V.A. Cimmelli, Numerical reconstruction of heat pulse experiments. Int. J. Eng. Sci. 33(2), 209–215 (1995)MATHCrossRef K. Frischmuth, V.A. Cimmelli, Numerical reconstruction of heat pulse experiments. Int. J. Eng. Sci. 33(2), 209–215 (1995)MATHCrossRef
76.
go back to reference K. Frischmuth, V.A. Cimmelli, Hyperbolic heat conduction with variable relaxation time. J. Theor. Appl. Mech. 34(1), 57–65 (1996)MATH K. Frischmuth, V.A. Cimmelli, Hyperbolic heat conduction with variable relaxation time. J. Theor. Appl. Mech. 34(1), 57–65 (1996)MATH
77.
go back to reference K. Frischmuth, V.A. Cimmelli, Coupling in thermo-mechanical wave propagation in NaF at low temperature. Arch. Mech. 50(4), 703–713 (1998)MATH K. Frischmuth, V.A. Cimmelli, Coupling in thermo-mechanical wave propagation in NaF at low temperature. Arch. Mech. 50(4), 703–713 (1998)MATH
78.
go back to reference G. Chen, Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86(11), 2297–2300 (2001)CrossRef G. Chen, Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86(11), 2297–2300 (2001)CrossRef
79.
go back to reference G. Chen, Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transf. 124(2), 320–328 (2002)CrossRef G. Chen, Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transf. 124(2), 320–328 (2002)CrossRef
80.
go back to reference Y. Ma, A hybrid phonon gas model for transient ballistic-diffusive heat transport. J. Heat Transf. 135(4), 044501 (2013)CrossRef Y. Ma, A hybrid phonon gas model for transient ballistic-diffusive heat transport. J. Heat Transf. 135(4), 044501 (2013)CrossRef
81.
go back to reference Y. Ma, A transient ballistic– diffusive heat conduction model for heat pulse propagation in nonmetallic crystals. Int. J. Heat Mass Transf. 66, 592–602 (2013)CrossRef Y. Ma, A transient ballistic– diffusive heat conduction model for heat pulse propagation in nonmetallic crystals. Int. J. Heat Mass Transf. 66, 592–602 (2013)CrossRef
82.
go back to reference Y. Ma, Equation of phonon hydrodynamics for non-Fourier heat conduction, in 44th AIAA Thermophysics Conference, pp. 2902 (2013) Y. Ma, Equation of phonon hydrodynamics for non-Fourier heat conduction, in 44th AIAA Thermophysics Conference, pp. 2902 (2013)
83.
go back to reference F.X. Alvarez, D. Jou, Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90(8), 083109 (2007)CrossRef F.X. Alvarez, D. Jou, Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90(8), 083109 (2007)CrossRef
85.
go back to reference D. Jou, J. Casas-Vázquez, G. Lebon, M. Grmela, A phenomenological scaling approach for heat transport in nano-systems. Appl. Math. Lett. 18(8), 963–967 (2005)MATHCrossRef D. Jou, J. Casas-Vázquez, G. Lebon, M. Grmela, A phenomenological scaling approach for heat transport in nano-systems. Appl. Math. Lett. 18(8), 963–967 (2005)MATHCrossRef
86.
go back to reference G. Lebon, M. Grmela, C. Dubois, From ballistic to diffusive regimes in heat transport at nano-scales. Comptes Rendus Mecanique 339(5), 324–328 (2011)CrossRef G. Lebon, M. Grmela, C. Dubois, From ballistic to diffusive regimes in heat transport at nano-scales. Comptes Rendus Mecanique 339(5), 324–328 (2011)CrossRef
87.
go back to reference G. Lebon, M. Hatim, M. Grmela, Ch. Dubois, An extended thermodynamic model of transient heat conduction at sub-continuum scales. 467(2135), 3241–3256 (2011) G. Lebon, M. Hatim, M. Grmela, Ch. Dubois, An extended thermodynamic model of transient heat conduction at sub-continuum scales. 467(2135), 3241–3256 (2011)
88.
go back to reference D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(7), 1035 (1999)MathSciNetCrossRef D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(7), 1035 (1999)MathSciNetCrossRef
89.
go back to reference F.X. Alvarez, D. Jou, Boundary conditions and evolution of ballistic heat transport. J. Heat Transf. 132(1), 012404 (2010)CrossRef F.X. Alvarez, D. Jou, Boundary conditions and evolution of ballistic heat transport. J. Heat Transf. 132(1), 012404 (2010)CrossRef
90.
go back to reference R. Kovács, P. Ván, Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)CrossRef R. Kovács, P. Ván, Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)CrossRef
91.
go back to reference R. Kovács, P. Ván, Models of ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37(9), 95 (2016)CrossRef R. Kovács, P. Ván, Models of ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37(9), 95 (2016)CrossRef
92.
93.
go back to reference L.D. Landau, E.M. Lifshitz, Theoretical Physics, vol. 6 (Fluid Mechanics. Nauka, Moscow, 1986) L.D. Landau, E.M. Lifshitz, Theoretical Physics, vol. 6 (Fluid Mechanics. Nauka, Moscow, 1986)
94.
go back to reference A. Berezovski, M. Berezovski, Influence of microstructure on thermoelastic wave propagation. Acta Mechanica 224(11), 2623–2633 (2013)MathSciNetMATHCrossRef A. Berezovski, M. Berezovski, Influence of microstructure on thermoelastic wave propagation. Acta Mechanica 224(11), 2623–2633 (2013)MathSciNetMATHCrossRef
95.
go back to reference A. Berezovski, J. Engelbrecht, P. Ván, Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech. 84(9–11), 1249–1261 (2014)MATHCrossRef A. Berezovski, J. Engelbrecht, P. Ván, Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech. 84(9–11), 1249–1261 (2014)MATHCrossRef
96.
97.
go back to reference A. Berezovski, P. Ván, Internal Variables in Thermoelasticity (Springer, Berlin, 2017) A. Berezovski, P. Ván, Internal Variables in Thermoelasticity (Springer, Berlin, 2017)
98.
go back to reference P. Ván, A. Berezovski, J. Engelbrecht, Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)MATHCrossRef P. Ván, A. Berezovski, J. Engelbrecht, Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)MATHCrossRef
99.
go back to reference A. Berezovski, J. Engelbrecht, G.A. Maugin, Thermoelasticity with dual internal variables. J. Therm. Stresses 34(5–6), 413–430 (2011)MATHCrossRef A. Berezovski, J. Engelbrecht, G.A. Maugin, Thermoelasticity with dual internal variables. J. Therm. Stresses 34(5–6), 413–430 (2011)MATHCrossRef
100.
101.
go back to reference B. Nyíri, On the entropy current. J. Non-Equilib. Thermodyn. 16(2), 179–186 (1991) B. Nyíri, On the entropy current. J. Non-Equilib. Thermodyn. 16(2), 179–186 (1991)
102.
go back to reference J. Verhás, Thermodynamics and Rheology (Akadémiai Kiadó-Kluwer Academic Publisher, 1997) J. Verhás, Thermodynamics and Rheology (Akadémiai Kiadó-Kluwer Academic Publisher, 1997)
103.
go back to reference A. Berezovski and P. Ván. Internal variables in thermoelasticity. In Gy. Gróf and R. Kovács, editors, MS Abstract book of the 14th Joint European Thermodynamics Conference, pages 102–104, Budapest, 2017. Department of Energy Engineering, BME. ISBN 978-963-313-259-3 A. Berezovski and P. Ván. Internal variables in thermoelasticity. In Gy. Gróf and R. Kovács, editors, MS Abstract book of the 14th Joint European Thermodynamics Conference, pages 102–104, Budapest, 2017. Department of Energy Engineering, BME. ISBN 978-963-313-259-3
104.
go back to reference R. Kovács, Heat conduction beyond Fourier’s law: theoretical predictions and experimental validation. Ph.D. thesis, Budapest University of Technology and Economics (BME) (2017) R. Kovács, Heat conduction beyond Fourier’s law: theoretical predictions and experimental validation. Ph.D. thesis, Budapest University of Technology and Economics (BME) (2017)
105.
go back to reference B.D. Coleman, D.C. Newman, Implications of a nonlinearity in the theory of second sound in solids. Phys. Rev. B 37(4), 1492 (1988)CrossRef B.D. Coleman, D.C. Newman, Implications of a nonlinearity in the theory of second sound in solids. Phys. Rev. B 37(4), 1492 (1988)CrossRef
106.
go back to reference E. Parthãe, L. Gmelin, Gmelin Handbook of Inorganic and Organometallic Chemistry: TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, vol. 2 (Springer, Berlin, 1993) E. Parthãe, L. Gmelin, Gmelin Handbook of Inorganic and Organometallic Chemistry: TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, vol. 2 (Springer, Berlin, 1993)
107.
go back to reference S. Bargmann, P. Steinmann, Finite element approaches to non-classical heat conduction in solids. Comput. Model. Eng. Sci. 9(2), 133–150 (2005)MathSciNetMATH S. Bargmann, P. Steinmann, Finite element approaches to non-classical heat conduction in solids. Comput. Model. Eng. Sci. 9(2), 133–150 (2005)MathSciNetMATH
108.
go back to reference P.G. Klemens, Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 22(1), 265–275 (2001)CrossRef P.G. Klemens, Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 22(1), 265–275 (2001)CrossRef
109.
go back to reference D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124(2), 223–241 (2002)CrossRef D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124(2), 223–241 (2002)CrossRef
110.
go back to reference D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)CrossRef D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)CrossRef
111.
go back to reference W. Kim, R. Wang, A. Majumdar, Nanostructuring expands thermal limits. Nano Today 2(1), 40–47 (2007)CrossRef W. Kim, R. Wang, A. Majumdar, Nanostructuring expands thermal limits. Nano Today 2(1), 40–47 (2007)CrossRef
112.
go back to reference V. Rawat, Y.K. Koh, D.G. Cahill, T.D. Sands, Thermal conductivity of (Zr, W) N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105(2), 024909 (2009)CrossRef V. Rawat, Y.K. Koh, D.G. Cahill, T.D. Sands, Thermal conductivity of (Zr, W) N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105(2), 024909 (2009)CrossRef
113.
go back to reference B. Saha, T.D. Sands, U.V. Waghmare, First-principles analysis of ZrN/ScN metal/semiconductor superlattices for thermoelectric energy conversion. J. Appl. Phys. 109(8), 083717 (2011)CrossRef B. Saha, T.D. Sands, U.V. Waghmare, First-principles analysis of ZrN/ScN metal/semiconductor superlattices for thermoelectric energy conversion. J. Appl. Phys. 109(8), 083717 (2011)CrossRef
114.
go back to reference B. Saha, Y.R. Koh, J. Comparan, S. Sadasivam, J.L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, T.D. Sands, Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices. Phys. Rev. B 93(4), 045311 (2016)CrossRef B. Saha, Y.R. Koh, J. Comparan, S. Sadasivam, J.L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, T.D. Sands, Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices. Phys. Rev. B 93(4), 045311 (2016)CrossRef
115.
go back to reference W. Liu, M. Asheghi, Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)CrossRef W. Liu, M. Asheghi, Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)CrossRef
116.
go back to reference Z. Hao, L. Zhichao, T. Lilin, T. Zhimin, L. Litian, L. Zhijian, Measurement of thermal conductivity of ultra-thin single crystal silicon film using symmetric structure. Chin. J. Semiconductors-Chin. Ed. 27(11), 1961 (2006) Z. Hao, L. Zhichao, T. Lilin, T. Zhimin, L. Litian, L. Zhijian, Measurement of thermal conductivity of ultra-thin single crystal silicon film using symmetric structure. Chin. J. Semiconductors-Chin. Ed. 27(11), 1961 (2006)
117.
go back to reference F. Vázquez, F. Márkus, K. Gambár, Quantized heat transport in small systems: a phenomenological approach. Phys. Rev. E 79(3), 031113 (2009)CrossRef F. Vázquez, F. Márkus, K. Gambár, Quantized heat transport in small systems: a phenomenological approach. Phys. Rev. E 79(3), 031113 (2009)CrossRef
118.
go back to reference F. Vázquez, F. Márkus, Size effects on heat transport in small systems: dynamical phase transition from diffusive to ballistic regime. J. Appl. Phys. 105(6), 064915 (2009)CrossRef F. Vázquez, F. Márkus, Size effects on heat transport in small systems: dynamical phase transition from diffusive to ballistic regime. J. Appl. Phys. 105(6), 064915 (2009)CrossRef
119.
go back to reference M. Wang, N. Yang, Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110(6), 064310 (2011)CrossRef M. Wang, N. Yang, Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110(6), 064310 (2011)CrossRef
120.
go back to reference A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163 (2008)CrossRef A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163 (2008)CrossRef
121.
go back to reference S.R. Choi, D. Kim, S.-H. Choa, S.-H. Lee, J.-K. Kim, Thermal conductivity of AlN and SiC thin films. Int. J. Thermophys. 27(3), 896–905 (2006)CrossRef S.R. Choi, D. Kim, S.-H. Choa, S.-H. Lee, J.-K. Kim, Thermal conductivity of AlN and SiC thin films. Int. J. Thermophys. 27(3), 896–905 (2006)CrossRef
122.
go back to reference N. Yang, G. Zhang, B. Li, Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5(2), 85–90 (2010)CrossRef N. Yang, G. Zhang, B. Li, Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5(2), 85–90 (2010)CrossRef
123.
go back to reference R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101(10), 105501 (2008)CrossRef R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101(10), 105501 (2008)CrossRef
124.
go back to reference M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, Hi. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95(6), 065502 (2005) M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, Hi. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95(6), 065502 (2005)
125.
go back to reference B.-Y. Cao, Z.-Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102(5), 053503 (2007)CrossRef B.-Y. Cao, Z.-Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102(5), 053503 (2007)CrossRef
126.
go back to reference P.T. Alvarez, Thermal Transport in Semiconductors (Springer, Berlin, 2017) P.T. Alvarez, Thermal Transport in Semiconductors (Springer, Berlin, 2017)
127.
go back to reference A. Ziabari, P. Torres, B. Vermeersch, Y. Xuan, X. Cartoixà, A. Torelló, J.-H. Bahk, Y.R. Koh, M. Parsa, D.Y. Peide, F.X. Alvarez, A. Shakouri, Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 9(1), 255 (2018)CrossRef A. Ziabari, P. Torres, B. Vermeersch, Y. Xuan, X. Cartoixà, A. Torelló, J.-H. Bahk, Y.R. Koh, M. Parsa, D.Y. Peide, F.X. Alvarez, A. Shakouri, Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 9(1), 255 (2018)CrossRef
128.
go back to reference J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)CrossRef J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)CrossRef
129.
go back to reference C.-W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075903 (2008) C.-W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075903 (2008)
130.
go back to reference A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015)CrossRef A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015)CrossRef
131.
go back to reference J.L. Vossen, W. Kern, W. Kern, Thin Film Processes II, vol. 2 (Gulf Professional Publishing, Houston, 1991)CrossRef J.L. Vossen, W. Kern, W. Kern, Thin Film Processes II, vol. 2 (Gulf Professional Publishing, Houston, 1991)CrossRef
132.
go back to reference M. Ohring, Materials Science of Thin Films (Elsevier, New York, 2001) M. Ohring, Materials Science of Thin Films (Elsevier, New York, 2001)
133.
go back to reference A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transf. 115(1), 7–16 (1993)CrossRef A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transf. 115(1), 7–16 (1993)CrossRef
134.
go back to reference A.A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74(1), 31–39 (1993)CrossRef A.A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74(1), 31–39 (1993)CrossRef
135.
go back to reference G. Chen, Phonon wave heat conduction in thin films and superlattices. J. Heat Transf. 121(4), 945–953 (1999)CrossRef G. Chen, Phonon wave heat conduction in thin films and superlattices. J. Heat Transf. 121(4), 945–953 (1999)CrossRef
136.
go back to reference G. Chen, Particularities of heat conduction in nanostructures. J. Nanoparticle Res. 2(2), 199–204 (2000)CrossRef G. Chen, Particularities of heat conduction in nanostructures. J. Nanoparticle Res. 2(2), 199–204 (2000)CrossRef
137.
go back to reference G. Chen, Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39(4), 471–480 (2000)CrossRef G. Chen, Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39(4), 471–480 (2000)CrossRef
138.
go back to reference S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59(17), 1962 (1987)CrossRef S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59(17), 1962 (1987)CrossRef
139.
go back to reference S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Femtosecond room-temperature measurement of the electron-phonon coupling constant \(\gamma \) in metallic superconductors. Phys. Rev. Lett. 64(18), 2172 (1990)CrossRef S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Femtosecond room-temperature measurement of the electron-phonon coupling constant \(\gamma \) in metallic superconductors. Phys. Rev. Lett. 64(18), 2172 (1990)CrossRef
140.
go back to reference J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, E. Matthias, Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl. Phys. B 64(3), 387–390 (1997)CrossRef J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, E. Matthias, Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl. Phys. B 64(3), 387–390 (1997)CrossRef
141.
go back to reference M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9(1), 26 (2010)CrossRef M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9(1), 26 (2010)CrossRef
142.
go back to reference K.M. Hoogeboom-Pot, J.N. Hernandez-Charpak, X. Gu, T.D. Frazer, E.H. Anderson, W. Chao, R.W. Falcone, R. Yang, M.M. Murnane, H.C. Kapteyn, D. Nardi. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency, in Proceedings of the National Academy of Sciences (2015), pp. 201503449 K.M. Hoogeboom-Pot, J.N. Hernandez-Charpak, X. Gu, T.D. Frazer, E.H. Anderson, W. Chao, R.W. Falcone, R. Yang, M.M. Murnane, H.C. Kapteyn, D. Nardi. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency, in Proceedings of the National Academy of Sciences (2015), pp. 201503449
143.
go back to reference J. Lee, J. Lim, P. Yang, Ballistic phonon transport in holey silicon. Nano Lett. 15(5), 3273–3279 (2015)CrossRef J. Lee, J. Lim, P. Yang, Ballistic phonon transport in holey silicon. Nano Lett. 15(5), 3273–3279 (2015)CrossRef
144.
go back to reference C.Y. Zhao, T.J. Lu, H.P. Hodson, J.D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater. Sci. Eng.: A 367(1–2), 123–131 (2004)CrossRef C.Y. Zhao, T.J. Lu, H.P. Hodson, J.D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater. Sci. Eng.: A 367(1–2), 123–131 (2004)CrossRef
145.
go back to reference F.A. Coutelieris, J.M.P.Q. Delgado, Transport Processes in Porous Media (Springer, Berlin, 2012) F.A. Coutelieris, J.M.P.Q. Delgado, Transport Processes in Porous Media (Springer, Berlin, 2012)
146.
go back to reference K. Bamdad, A. Azimi, H. Ahmadikia, Thermal performance analysis of arbitrary-profile fins with non-fourier heat conduction behavior. J. Eng. Math. 76(1), 181–193 (2012)MathSciNetMATHCrossRef K. Bamdad, A. Azimi, H. Ahmadikia, Thermal performance analysis of arbitrary-profile fins with non-fourier heat conduction behavior. J. Eng. Math. 76(1), 181–193 (2012)MathSciNetMATHCrossRef
147.
go back to reference T.J. Bright, Z.M. Zhang, Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transf. 23, 601–607 (2009)CrossRef T.J. Bright, Z.M. Zhang, Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transf. 23, 601–607 (2009)CrossRef
148.
go back to reference R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24(13), 1841–1849 (2004)CrossRef R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24(13), 1841–1849 (2004)CrossRef
149.
go back to reference M.A. Schuetz, L.R. Glicksman, A basic study of heat transfer through foam insulation. J. Cell. Plast. 20(2), 114–121 (1984)CrossRef M.A. Schuetz, L.R. Glicksman, A basic study of heat transfer through foam insulation. J. Cell. Plast. 20(2), 114–121 (1984)CrossRef
150.
go back to reference J.M.P.Q. Delgado, Heat and Mass Transfer in Porous Media (Springer, Berlin, 2012) J.M.P.Q. Delgado, Heat and Mass Transfer in Porous Media (Springer, Berlin, 2012)
151.
go back to reference A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45(5), 1017–1031 (2002)MATHCrossRef A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45(5), 1017–1031 (2002)MATHCrossRef
152.
go back to reference A.M. Druma, M.K. Alam, C. Druma, Analysis of thermal conduction in carbon foams. Int. J. Therm. Sci. 43(7), 689–695 (2004)CrossRef A.M. Druma, M.K. Alam, C. Druma, Analysis of thermal conduction in carbon foams. Int. J. Therm. Sci. 43(7), 689–695 (2004)CrossRef
153.
go back to reference F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic, 2012) F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic, 2012)
154.
go back to reference Z. Liu, Multiphysics in Porous Materials (Springer International Publishing AG, 2018) Z. Liu, Multiphysics in Porous Materials (Springer International Publishing AG, 2018)
155.
go back to reference A.G. Leach, The thermal conductivity of foams I: models for heat conduction. J. Phys. D: Appl. Phys. 26(5), 733 (1993)CrossRef A.G. Leach, The thermal conductivity of foams I: models for heat conduction. J. Phys. D: Appl. Phys. 26(5), 733 (1993)CrossRef
156.
go back to reference A.V. Luikov, Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer. J. Eng. Phys. 9(3), 189–202 (1965)CrossRef A.V. Luikov, Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer. J. Eng. Phys. 9(3), 189–202 (1965)CrossRef
157.
go back to reference A.V. Luikov, Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int. J. Heat Mass Transf. 9(2), 139–152 (1966)CrossRef A.V. Luikov, Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int. J. Heat Mass Transf. 9(2), 139–152 (1966)CrossRef
158.
go back to reference W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)CrossRef W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)CrossRef
159.
go back to reference A. Graßmann, F. Peters, Experimental investigation of heat conduction in wet sand. Heat Mass Transf. 35(4), 289–294 (1999)CrossRef A. Graßmann, F. Peters, Experimental investigation of heat conduction in wet sand. Heat Mass Transf. 35(4), 289–294 (1999)CrossRef
160.
go back to reference H. Herwig, K. Beckert, Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Trans.-Am. Soc. Mech. Eng. J. Heat Transf. 122(2), 363–364 (2000)CrossRef H. Herwig, K. Beckert, Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Trans.-Am. Soc. Mech. Eng. J. Heat Transf. 122(2), 363–364 (2000)CrossRef
161.
go back to reference H. Herwig, K. Beckert, Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf. 36(5), 387–392 (2000)CrossRef H. Herwig, K. Beckert, Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf. 36(5), 387–392 (2000)CrossRef
162.
go back to reference A. Vedavarz, S. Kumar, M.K. Moallemi, Significance of non-Fourier heat waves in conduction. J. Heat Transf. 116(1), 221–226 (1994)CrossRef A. Vedavarz, S. Kumar, M.K. Moallemi, Significance of non-Fourier heat waves in conduction. J. Heat Transf. 116(1), 221–226 (1994)CrossRef
163.
go back to reference K. Mitra, S. Kumar, A. Vedevarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)CrossRef K. Mitra, S. Kumar, A. Vedevarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)CrossRef
164.
go back to reference E.P. Scott, M. Tilahun, B. Vick, The question of thermal waves in heterogeneous and biological materials. J. Biomech. Eng. 131(7), 074518 (2009)CrossRef E.P. Scott, M. Tilahun, B. Vick, The question of thermal waves in heterogeneous and biological materials. J. Biomech. Eng. 131(7), 074518 (2009)CrossRef
165.
go back to reference W. Roetzel, N. Putra, S.K. Das, Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42(6), 541–552 (2003)CrossRef W. Roetzel, N. Putra, S.K. Das, Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42(6), 541–552 (2003)CrossRef
166.
go back to reference P.J. Antaki, New interpretation of non-Fourier heat conduction in processed meat. J. Heat Transf. 127(2), 189–193 (2005)CrossRef P.J. Antaki, New interpretation of non-Fourier heat conduction in processed meat. J. Heat Transf. 127(2), 189–193 (2005)CrossRef
167.
go back to reference F. Jiang, Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale Thermophys. Eng. 6(4), 331–346 (2003)CrossRef F. Jiang, Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale Thermophys. Eng. 6(4), 331–346 (2003)CrossRef
168.
go back to reference D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)CrossRef D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)CrossRef
169.
go back to reference R.E. Khayat, J. deBruyn, M. Niknami, D.F. Stranges, R.M.H. Khorasany, Non-Fourier effects in macro-and micro-scale non-isothermal flow of liquids and gases. review. Int. J. Therm. Sci. 97, 163–177 (2015)CrossRef R.E. Khayat, J. deBruyn, M. Niknami, D.F. Stranges, R.M.H. Khorasany, Non-Fourier effects in macro-and micro-scale non-isothermal flow of liquids and gases. review. Int. J. Therm. Sci. 97, 163–177 (2015)CrossRef
170.
go back to reference L. Kovács, E. Mészáros, F. Deák, G. Somodi, K. Máté, A. Jakab (Kőmérő Kft.), Vásárhelyi B. (Vásárhelyi és Társa Kft.), Geiger J. (SZTE), Dankó Gy., Korpai F., Mező Gy., Darvas K. (Golder Zrt.), Ván P., Fülöp T., and Asszonyi Cs. (Montavid Termodinamikai Kutatócsoport). A Geotechnikai Értelmező Jelentés (GÉJ) felülvizsgálata és kiterjesztése. Technical report. Kézirat - Kőmérő Kft. Pécs, RHK Kft. Irattár, RHK-K-032/12 (2012) L. Kovács, E. Mészáros, F. Deák, G. Somodi, K. Máté, A. Jakab (Kőmérő Kft.), Vásárhelyi B. (Vásárhelyi és Társa Kft.), Geiger J. (SZTE), Dankó Gy., Korpai F., Mező Gy., Darvas K. (Golder Zrt.), Ván P., Fülöp T., and Asszonyi Cs. (Montavid Termodinamikai Kutatócsoport). A Geotechnikai Értelmező Jelentés (GÉJ) felülvizsgálata és kiterjesztése. Technical report. Kézirat - Kőmérő Kft. Pécs, RHK Kft. Irattár, RHK-K-032/12 (2012)
171.
go back to reference B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, P. Ván, Simple heat conduction experiments, in 11th International Conference on Heat Engines and Environmental Protection, ed. by Dombi Sz, Budapest, BME, Dep. of Energy Engineering (2013), pp. 141–146 B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, P. Ván, Simple heat conduction experiments, in 11th International Conference on Heat Engines and Environmental Protection, ed. by Dombi Sz, Budapest, BME, Dep. of Energy Engineering (2013), pp. 141–146
172.
go back to reference T. Fülöp, R. Kovács, P. Ván, Thermodynamic hierarchies of evolution equations. Proc. Estonian Acad. Sci. 64(3), 389–395 (2015)MATHCrossRef T. Fülöp, R. Kovács, P. Ván, Thermodynamic hierarchies of evolution equations. Proc. Estonian Acad. Sci. 64(3), 389–395 (2015)MATHCrossRef
173.
go back to reference A. Kossa, A new biaxial compression fixture for polymeric foams. Polym. Test. 45, 47–51 (2015)CrossRef A. Kossa, A new biaxial compression fixture for polymeric foams. Polym. Test. 45, 47–51 (2015)CrossRef
174.
go back to reference A. Kossa, Sz. Berezvai, Visco-hyperelastic characterization of polymeric foam materials. Mater. Today: Proc. 3(4), 1003–1008 (2016) A. Kossa, Sz. Berezvai, Visco-hyperelastic characterization of polymeric foam materials. Mater. Today: Proc. 3(4), 1003–1008 (2016)
175.
go back to reference M.F. Ashby, T. Evans, N.A. Fleck, J.W. Hutchinson, H.N.G. Wadley, L.J. Gibson, Metal Foams: A Design Guide (Elsevier, 2000) M.F. Ashby, T. Evans, N.A. Fleck, J.W. Hutchinson, H.N.G. Wadley, L.J. Gibson, Metal Foams: A Design Guide (Elsevier, 2000)
176.
go back to reference D.L. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 2001) D.L. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 2001)
177.
go back to reference M.A. Mujeebu, M. Zu. Abdullah, M.Z.A. Bakar, A.A. Mohamad, M.K. Abdullah, Applications of porous media combustion technology–a review. Appl. Energy 86(9), 1365–1375 (2009)CrossRef M.A. Mujeebu, M. Zu. Abdullah, M.Z.A. Bakar, A.A. Mohamad, M.K. Abdullah, Applications of porous media combustion technology–a review. Appl. Energy 86(9), 1365–1375 (2009)CrossRef
178.
go back to reference M.A. Mujeebu, M.Z. Abdullah, A.A. Mohamad, M.A. Bakar, Trends in modeling of porous media combustion. Prog. Energy Combust. Sci. 36(6), 627–650 (2010)CrossRef M.A. Mujeebu, M.Z. Abdullah, A.A. Mohamad, M.A. Bakar, Trends in modeling of porous media combustion. Prog. Energy Combust. Sci. 36(6), 627–650 (2010)CrossRef
179.
go back to reference D. Trimis, F. Durst, Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121(1–6), 153–168 (1996)CrossRef D. Trimis, F. Durst, Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121(1–6), 153–168 (1996)CrossRef
180.
go back to reference N.I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, K. Maruta, Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust. Flame 141(3), 229–240 (2005)CrossRef N.I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, K. Maruta, Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust. Flame 141(3), 229–240 (2005)CrossRef
181.
go back to reference N.I. Kim, S. Aizumi, T. Yokomori, S. Kato, T. Fujimori, K. Maruta, Development and scale effects of small swiss-roll combustors. Proc. Combust. Inst. 31(2), 3243–3250 (2007)CrossRef N.I. Kim, S. Aizumi, T. Yokomori, S. Kato, T. Fujimori, K. Maruta, Development and scale effects of small swiss-roll combustors. Proc. Combust. Inst. 31(2), 3243–3250 (2007)CrossRef
182.
go back to reference S.K. Som, A. Datta, Thermodynamic irreversibilities and exergy balance in combustion processes. Prog. Energy Combust. Sci. 34(3), 351–376 (2008)CrossRef S.K. Som, A. Datta, Thermodynamic irreversibilities and exergy balance in combustion processes. Prog. Energy Combust. Sci. 34(3), 351–376 (2008)CrossRef
183.
go back to reference S. Wood, A.T. Harris, Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34(5), 667–684 (2008)CrossRef S. Wood, A.T. Harris, Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34(5), 667–684 (2008)CrossRef
184.
go back to reference Y. Ju, K. Maruta, Microscale combustion: technology development and fundamental research. Prog. Energy Combust. Sci. 37(6), 669–715 (2011)CrossRef Y. Ju, K. Maruta, Microscale combustion: technology development and fundamental research. Prog. Energy Combust. Sci. 37(6), 669–715 (2011)CrossRef
185.
go back to reference S. Whitaker, Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Advances in Heat Transfer, vol. 13 (Elsevier, 1977). pp. 119–203 S. Whitaker, Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Advances in Heat Transfer, vol. 13 (Elsevier, 1977). pp. 119–203
186.
go back to reference L. Imre, T. Környey, Computer simulation of salami drying. Int. J. Numer. Methods Eng. 30(4), 767–777 (1990)CrossRef L. Imre, T. Környey, Computer simulation of salami drying. Int. J. Numer. Methods Eng. 30(4), 767–777 (1990)CrossRef
187.
go back to reference T.Z. Harmathy, Simultaneous moisture and heat transfer in porous systems with particular reference to drying. Ind. Eng. Chem. Fundam. 8(1), 92–103 (1969)CrossRef T.Z. Harmathy, Simultaneous moisture and heat transfer in porous systems with particular reference to drying. Ind. Eng. Chem. Fundam. 8(1), 92–103 (1969)CrossRef
188.
go back to reference I. Farkas, M.J. Lampinen, K. Ojala, Water flow and binder migration during drying of coated paper. Dry. Technol. 9(4), 1019–1049 (1991)CrossRef I. Farkas, M.J. Lampinen, K. Ojala, Water flow and binder migration during drying of coated paper. Dry. Technol. 9(4), 1019–1049 (1991)CrossRef
189.
go back to reference C.L.D. Huang, H.H. Siang, C.H. Best, Heat and moisture transfer in concrete slabs. Int. J. Heat Mass Transf. 22(2), 257–266 (1979)CrossRef C.L.D. Huang, H.H. Siang, C.H. Best, Heat and moisture transfer in concrete slabs. Int. J. Heat Mass Transf. 22(2), 257–266 (1979)CrossRef
190.
go back to reference S. Whitaker, flow in porous media i: a theoretical derivation of darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)MathSciNetCrossRef S. Whitaker, flow in porous media i: a theoretical derivation of darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)MathSciNetCrossRef
191.
go back to reference M. Liu, J. Wu, Y. Gan, D.A.H. Hanaor, C.Q. Chen, Evaporation limited radial capillary penetration in porous media. Langmuir 32(38), 9899–9904 (2016)CrossRef M. Liu, J. Wu, Y. Gan, D.A.H. Hanaor, C.Q. Chen, Evaporation limited radial capillary penetration in porous media. Langmuir 32(38), 9899–9904 (2016)CrossRef
192.
go back to reference G. Rehage, O. Ernst, J. Fuhrmann, Fickian and non-Fickian diffusion in high polymer systems. Discuss. Faraday Soc. 49, 208–221 (1970)CrossRef G. Rehage, O. Ernst, J. Fuhrmann, Fickian and non-Fickian diffusion in high polymer systems. Discuss. Faraday Soc. 49, 208–221 (1970)CrossRef
193.
go back to reference D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, 4th edn. (Springer, New York, 2010)MATHCrossRef D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, 4th edn. (Springer, New York, 2010)MATHCrossRef
194.
go back to reference D. Jou, J. Camacho, M. Grmela, On the nonequilibrium thermodynamics of non-Fickian diffusion. Macromolecules 24(12), 3597–3602 (1991)CrossRef D. Jou, J. Camacho, M. Grmela, On the nonequilibrium thermodynamics of non-Fickian diffusion. Macromolecules 24(12), 3597–3602 (1991)CrossRef
195.
go back to reference E.H. Wong, K.C. Chan, T.B. Lim, T.F. Lam, Non-Fickian moisture properties characterisation and diffusion modeling for electronic packages (1999), pp. 302–306 E.H. Wong, K.C. Chan, T.B. Lim, T.F. Lam, Non-Fickian moisture properties characterisation and diffusion modeling for electronic packages (1999), pp. 302–306
196.
go back to reference D. De Kee, Q. Liu, J. Hinestroza, Viscoelastic (non-Fickian) diffusion. Canad. J. Chem. Eng. 83(6), 913–929 (2005)CrossRef D. De Kee, Q. Liu, J. Hinestroza, Viscoelastic (non-Fickian) diffusion. Canad. J. Chem. Eng. 83(6), 913–929 (2005)CrossRef
197.
go back to reference L. Durlofsky, J.F. Brady, Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3341 (1987)MATHCrossRef L. Durlofsky, J.F. Brady, Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3341 (1987)MATHCrossRef
198.
go back to reference K.Y. Wertheim, T. Roose, A mathematical model of lymphangiogenesis in a zebrafish embryo. Bull. Math. Biol. 79(4), 693–737 (2017)MathSciNetMATHCrossRef K.Y. Wertheim, T. Roose, A mathematical model of lymphangiogenesis in a zebrafish embryo. Bull. Math. Biol. 79(4), 693–737 (2017)MathSciNetMATHCrossRef
199.
go back to reference H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbul. Combust. 1(1), 27 (1949)MATHCrossRef H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbul. Combust. 1(1), 27 (1949)MATHCrossRef
200.
go back to reference D.A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Fluid Flow 12(3), 269–272 (1991)CrossRef D.A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Fluid Flow 12(3), 269–272 (1991)CrossRef
201.
go back to reference K. Vafai, S. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation. Int. J.f Heat Fluid Flow 16(1), 11–15 (1995)CrossRef K. Vafai, S. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation. Int. J.f Heat Fluid Flow 16(1), 11–15 (1995)CrossRef
202.
go back to reference F.J. Valdes-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, On the effective viscosity for the darcy-brinkman equation. Phys. A: Stat. Mech. Appl. 385(1), 69–79 (2007)MathSciNetCrossRef F.J. Valdes-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, On the effective viscosity for the darcy-brinkman equation. Phys. A: Stat. Mech. Appl. 385(1), 69–79 (2007)MathSciNetCrossRef
203.
go back to reference K. Vafai, Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147, 233–259 (1984)MATHCrossRef K. Vafai, Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147, 233–259 (1984)MATHCrossRef
204.
go back to reference K. Vafai, R.L. Alkire, C.L. Tien, An experimental investigation of heat transfer in variable porosity media. J. Heat Transf. 107(3), 642–647 (1985)CrossRef K. Vafai, R.L. Alkire, C.L. Tien, An experimental investigation of heat transfer in variable porosity media. J. Heat Transf. 107(3), 642–647 (1985)CrossRef
205.
go back to reference K. Vafai, Analysis of the channeling effect in variable porosity media. J. Energy Res. Technol. 108(2), 131–139 (1986)CrossRef K. Vafai, Analysis of the channeling effect in variable porosity media. J. Energy Res. Technol. 108(2), 131–139 (1986)CrossRef
206.
go back to reference A. Amiri, K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37(6), 939–954 (1994)CrossRef A. Amiri, K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37(6), 939–954 (1994)CrossRef
207.
go back to reference A. Amiri, K. Vafai, Transient analysis of incompressible flow through a packed bed. Int. J. Heat Mass Transf. 41(24), 4259–4279 (1998)MATHCrossRef A. Amiri, K. Vafai, Transient analysis of incompressible flow through a packed bed. Int. J. Heat Mass Transf. 41(24), 4259–4279 (1998)MATHCrossRef
208.
go back to reference W.J. Minkowycz, A. Haji-Sheikh, K.F. Vafai, On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42(18), 3373–3385 (1999)MATHCrossRef W.J. Minkowycz, A. Haji-Sheikh, K.F. Vafai, On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42(18), 3373–3385 (1999)MATHCrossRef
209.
go back to reference B. Alazmi, K. Vafai, Analysis of variants within the porous media transport models. J. Heat Transf. 122(2), 303–326 (2000)CrossRef B. Alazmi, K. Vafai, Analysis of variants within the porous media transport models. J. Heat Transf. 122(2), 303–326 (2000)CrossRef
210.
go back to reference M. Modaresifar, G.J. Kowalski, Numerical simulation of an injection microscale calorimeter to identify significant thermal processes and verify data reduction procedures, in ASME 2017 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2017), pp. V008T10A043–V008T10A043 M. Modaresifar, G.J. Kowalski, Numerical simulation of an injection microscale calorimeter to identify significant thermal processes and verify data reduction procedures, in ASME 2017 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2017), pp. V008T10A043–V008T10A043
211.
go back to reference A.J. Conway, W.M. Saadi, F.L. Sinatra, G.J. Kowalski, D. Larson, J. Fiering, Dispersion of a nanoliter bolus in microfluidic co-flow. J. Micromech. Microeng. 24(3), 034006 (2014)CrossRef A.J. Conway, W.M. Saadi, F.L. Sinatra, G.J. Kowalski, D. Larson, J. Fiering, Dispersion of a nanoliter bolus in microfluidic co-flow. J. Micromech. Microeng. 24(3), 034006 (2014)CrossRef
212.
go back to reference M. Modaresifar, G.J. Kowalski, Microscale calorimetric device for determining reaction parameters. Thermochimica Acta 655, 137–144 (2017)CrossRef M. Modaresifar, G.J. Kowalski, Microscale calorimetric device for determining reaction parameters. Thermochimica Acta 655, 137–144 (2017)CrossRef
213.
go back to reference M. Modaresifar, Thermal Analysis of Chemical Reactions in Microcalorimeter Using Extraordinary Optical Transmission Through Nanohole Arrays. Ph.D. thesis, Northeastern University (2019) M. Modaresifar, Thermal Analysis of Chemical Reactions in Microcalorimeter Using Extraordinary Optical Transmission Through Nanohole Arrays. Ph.D. thesis, Northeastern University (2019)
214.
go back to reference T.N.F. Roach, P. Salamon, J. Nulton, B. Andresen, B. Felts, A. Haas, S. Calhoun, N. Robinett, F. Rohwer, Application of finite-time and control thermodynamics to biological processes at multiple scales. J. Non-Equilib. Thermodyn. 43(3), 193–210 (2018)CrossRef T.N.F. Roach, P. Salamon, J. Nulton, B. Andresen, B. Felts, A. Haas, S. Calhoun, N. Robinett, F. Rohwer, Application of finite-time and control thermodynamics to biological processes at multiple scales. J. Non-Equilib. Thermodyn. 43(3), 193–210 (2018)CrossRef
215.
go back to reference H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)CrossRef H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)CrossRef
216.
go back to reference M.M. Chen, K.R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N.Y. Acad. Sci. 335(1), 137–150 (1980)CrossRef M.M. Chen, K.R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N.Y. Acad. Sci. 335(1), 137–150 (1980)CrossRef
217.
go back to reference S. Weinbaum, L.M. Jiji, D.E. Lemons, Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-Part I: anatomical foundation and model conceptualization. J. Biomech. Eng. 106(4), 321–330 (1984)CrossRef S. Weinbaum, L.M. Jiji, D.E. Lemons, Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-Part I: anatomical foundation and model conceptualization. J. Biomech. Eng. 106(4), 321–330 (1984)CrossRef
218.
219.
go back to reference S. Weinbaum, L.M. Jiji, A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 107(2), 131–139 (1985)CrossRef S. Weinbaum, L.M. Jiji, A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 107(2), 131–139 (1985)CrossRef
220.
go back to reference W. Wulff, The energy conservation equation for living tissue. IEEE Trans. Biomed. Eng. 6(BME-21), 494–495 (1974)CrossRef W. Wulff, The energy conservation equation for living tissue. IEEE Trans. Biomed. Eng. 6(BME-21), 494–495 (1974)CrossRef
221.
go back to reference H.G. Klinger, Heat transfer in perfused biological tissue-I: general theory. Bull. Math. Biol. 36, 403–415 (1974)MathSciNetMATH H.G. Klinger, Heat transfer in perfused biological tissue-I: general theory. Bull. Math. Biol. 36, 403–415 (1974)MathSciNetMATH
222.
go back to reference H.G. Klinger, Heat transfer in perfused biological tissue-II: The “macroscopic” temperature distribution in tissue. Bull. Math. Biol. 40(2), 183–199 (1978)MathSciNet H.G. Klinger, Heat transfer in perfused biological tissue-II: The “macroscopic” temperature distribution in tissue. Bull. Math. Biol. 40(2), 183–199 (1978)MathSciNet
223.
go back to reference G.T. Anderson, J.W. Valvano, A small artery heat transfer model for self-heated thermistor measurements of perfusion in the kidney cortex. J. Biomech. Eng. 116(1), 71–78 (1994)CrossRef G.T. Anderson, J.W. Valvano, A small artery heat transfer model for self-heated thermistor measurements of perfusion in the kidney cortex. J. Biomech. Eng. 116(1), 71–78 (1994)CrossRef
224.
go back to reference A. Zolfaghari, M. Maerefat, A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments. Build. Environ. 45(10), 2068–2076 (2010)CrossRef A. Zolfaghari, M. Maerefat, A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments. Build. Environ. 45(10), 2068–2076 (2010)CrossRef
225.
go back to reference A.P. Gagge, Rational temperature indices of man’s thermal environment and their use with a 2-node model of his temperature regulation, in Federation Proceedings, vol. 32 (1973), pp. 1572 A.P. Gagge, Rational temperature indices of man’s thermal environment and their use with a 2-node model of his temperature regulation, in Federation Proceedings, vol. 32 (1973), pp. 1572
226.
go back to reference P.A. Patel, J.W. Valvano, J.A. Pearce, S.A. Prahl, C.R. Denham, A self-heated thermistor technique to measure effective thermal properties from the tissue surface. J. Biomech. Eng. 109(4), 330–335 (1987)CrossRef P.A. Patel, J.W. Valvano, J.A. Pearce, S.A. Prahl, C.R. Denham, A self-heated thermistor technique to measure effective thermal properties from the tissue surface. J. Biomech. Eng. 109(4), 330–335 (1987)CrossRef
227.
go back to reference R.B. Roemer, E.G. Moros, K. Hynynen, A comparison of bioheat transfer and effective conductivity equation predictions to experimental hyperthermia data, Advances in Bioengineering (ASME Winter Annual Meeting, 1989), pp. 11–15 R.B. Roemer, E.G. Moros, K. Hynynen, A comparison of bioheat transfer and effective conductivity equation predictions to experimental hyperthermia data, Advances in Bioengineering (ASME Winter Annual Meeting, 1989), pp. 11–15
228.
go back to reference J.L.M. Hensen, Literature review on thermal comfort in transient conditions. Build. Environ. 25(4), 309–316 (1990)CrossRef J.L.M. Hensen, Literature review on thermal comfort in transient conditions. Build. Environ. 25(4), 309–316 (1990)CrossRef
229.
go back to reference F. Kreith, The CRC Handbook of Thermal Engineering (Springer Science & Business Media, Berlin, 2000) F. Kreith, The CRC Handbook of Thermal Engineering (Springer Science & Business Media, Berlin, 2000)
230.
go back to reference L. Zhu, C. Diao, Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Med. Biolo. Eng. Comput. 39(6), 681–687 (2001)CrossRef L. Zhu, C. Diao, Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Med. Biolo. Eng. Comput. 39(6), 681–687 (2001)CrossRef
231.
go back to reference G. Chenhua, C. Ruixian, An analytical solution of non-Fourier Chen-Holmes bioheat transfer equation. Chin. Sci. Bull. 50(23), 2791–2792 (2005)MathSciNetCrossRef G. Chenhua, C. Ruixian, An analytical solution of non-Fourier Chen-Holmes bioheat transfer equation. Chin. Sci. Bull. 50(23), 2791–2792 (2005)MathSciNetCrossRef
232.
go back to reference Y-G. Lv, J. Liu, Effect of transient temperature on thermoreceptor response and thermal sensation. Build. Environ. 42(2), 656–664 (2007)CrossRef Y-G. Lv, J. Liu, Effect of transient temperature on thermoreceptor response and thermal sensation. Build. Environ. 42(2), 656–664 (2007)CrossRef
233.
go back to reference W.J. Minkowycz, E.M. Sparrow, Advances in Numerical Heat Transfer, vol. 3. (CRC, Bocca Raton, 2009) W.J. Minkowycz, E.M. Sparrow, Advances in Numerical Heat Transfer, vol. 3. (CRC, Bocca Raton, 2009)
234.
go back to reference A. Zolfaghari, M. Maerefat, Bioheat Transfer. InTech (2011) A. Zolfaghari, M. Maerefat, Bioheat Transfer. InTech (2011)
235.
go back to reference S. Becker, A. Kuznetsov, Heat Transfer and Fluid Flow in Biological Processes (Academic, 2014) S. Becker, A. Kuznetsov, Heat Transfer and Fluid Flow in Biological Processes (Academic, 2014)
236.
go back to reference C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics (Springer, Berlin, 2004) C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics (Springer, Berlin, 2004)
237.
238.
go back to reference T. Matolcsi, P. Ván, Can material time derivative be objective? Phys. Lett. A 353(2), 109–112 (2006)CrossRef T. Matolcsi, P. Ván, Can material time derivative be objective? Phys. Lett. A 353(2), 109–112 (2006)CrossRef
239.
go back to reference A. Banerjee, A.A. Ogale, C. Das, K. Mitra, C. Subramanian, Temperature distribution in different materials due to short pulse laser irradiation. Heat Transf. Eng. 26(8), 41–49 (2005)CrossRef A. Banerjee, A.A. Ogale, C. Das, K. Mitra, C. Subramanian, Temperature distribution in different materials due to short pulse laser irradiation. Heat Transf. Eng. 26(8), 41–49 (2005)CrossRef
240.
go back to reference M. Jaunich, S. Raje, K. Kim, K. Mitra, Z. Guo, Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat Mass Transf. 51(23), 5511–5521 (2008)MATHCrossRef M. Jaunich, S. Raje, K. Kim, K. Mitra, Z. Guo, Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat Mass Transf. 51(23), 5511–5521 (2008)MATHCrossRef
241.
go back to reference P. Dhar, A. Paul, A. Narasimhan, S.K. Das, Analytical prediction of sub surface thermal history in translucent tissue phantoms during plasmonic photo thermotherapy (2015). arXiv:1511.04549 P. Dhar, A. Paul, A. Narasimhan, S.K. Das, Analytical prediction of sub surface thermal history in translucent tissue phantoms during plasmonic photo thermotherapy (2015). arXiv:​1511.​04549
242.
go back to reference D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)CrossRef D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)CrossRef
243.
go back to reference D.Y. Tzou, Macro- to Micro-scale Heat Transfer: The Lagging Behavior (CRC Press, Bocca Raton, 1996) D.Y. Tzou, Macro- to Micro-scale Heat Transfer: The Lagging Behavior (CRC Press, Bocca Raton, 1996)
244.
go back to reference J. Zhou, J.K. Chen, Y. Zhang, Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39(3), 286–293 (2009)CrossRef J. Zhou, J.K. Chen, Y. Zhang, Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39(3), 286–293 (2009)CrossRef
245.
go back to reference P. Yuan, Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52(7), 1734–1740 (2009)MATHCrossRef P. Yuan, Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52(7), 1734–1740 (2009)MATHCrossRef
246.
go back to reference P. Hooshmand, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)CrossRef P. Hooshmand, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)CrossRef
247.
go back to reference S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 78, 58–63 (2014)CrossRef S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 78, 58–63 (2014)CrossRef
248.
go back to reference S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations. Int. J. Therm. Sci. 113, 83–88 (2017)CrossRef S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations. Int. J. Therm. Sci. 113, 83–88 (2017)CrossRef
249.
go back to reference M. Fabrizio, B. Lazzari, V. Tibullo, Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J. Non-Equilib. Thermodyn. (2017) M. Fabrizio, B. Lazzari, V. Tibullo, Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J. Non-Equilib. Thermodyn. (2017)
250.
go back to reference M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 74, 484–489 (2014)CrossRef M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 74, 484–489 (2014)CrossRef
251.
go back to reference M. Fabrizio, F. Franchi, Delayed thermal models: stability and thermodynamics. J. Therm. Stress. 37(2), 160–173 (2014)CrossRef M. Fabrizio, F. Franchi, Delayed thermal models: stability and thermodynamics. J. Therm. Stress. 37(2), 160–173 (2014)CrossRef
252.
go back to reference R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 463(2079), 659–674 (2007)MathSciNetMATHCrossRef R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 463(2079), 659–674 (2007)MathSciNetMATHCrossRef
253.
254.
go back to reference F. Xu, K.A. Seffen, T.J. Lu, Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51(9), 2237–2259 (2008)MATHCrossRef F. Xu, K.A. Seffen, T.J. Lu, Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51(9), 2237–2259 (2008)MATHCrossRef
255.
go back to reference N. Sahoo, S. Ghosh, A. Narasimhan, Sa. K. Das, Investigation of non-Fourier effects in bio-tissues during laser assisted photothermal therapy. Int. J. Therm. Sci. 76, 208–220 (2014)CrossRef N. Sahoo, S. Ghosh, A. Narasimhan, Sa. K. Das, Investigation of non-Fourier effects in bio-tissues during laser assisted photothermal therapy. Int. J. Therm. Sci. 76, 208–220 (2014)CrossRef
256.
go back to reference Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52(21), 4829–4834 (2009)MATHCrossRef Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52(21), 4829–4834 (2009)MATHCrossRef
257.
go back to reference N. Afrin, J. Zhou, Y. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transf. Part A: Appl. 61(7), 483–501 (2012)CrossRef N. Afrin, J. Zhou, Y. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transf. Part A: Appl. 61(7), 483–501 (2012)CrossRef
258.
go back to reference Kuo-Chi Liu, Han-Taw Chen, Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Therm. Sci. 49(7), 1138–1146 (2010)CrossRef Kuo-Chi Liu, Han-Taw Chen, Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Therm. Sci. 49(7), 1138–1146 (2010)CrossRef
259.
go back to reference W. Andrä, C.G. d’Ambly, R. Hergt, I. Hilger, W.A. Kaiser, Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J. Mag. Mag. Mater. 194(1), 197–203 (1999)CrossRef W. Andrä, C.G. d’Ambly, R. Hergt, I. Hilger, W.A. Kaiser, Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J. Mag. Mag. Mater. 194(1), 197–203 (1999)CrossRef
260.
go back to reference D. Tang, N. Araki, N. Yamagishi, Transient temperature responses in biological materials under pulsed IR irradiation. Heat Mass Transf. 43(6), 579–585 (2007)CrossRef D. Tang, N. Araki, N. Yamagishi, Transient temperature responses in biological materials under pulsed IR irradiation. Heat Mass Transf. 43(6), 579–585 (2007)CrossRef
261.
go back to reference Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, vol. 5 (Springer Science & Business Media, Berlin, 2013) Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, vol. 5 (Springer Science & Business Media, Berlin, 2013)
262.
go back to reference B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials. Mater. Sci. Eng.: A 362(1–2), 81–106 (2003)CrossRef B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials. Mater. Sci. Eng.: A 362(1–2), 81–106 (2003)CrossRef
263.
go back to reference V. Birman, L.W. Byrd, Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007)CrossRef V. Birman, L.W. Byrd, Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007)CrossRef
264.
go back to reference X.-Q. Fang, C. Hu, Dynamic effective thermal properties of functionally graded fibrous composites using non-fourier heat conduction. Comput. Mater. Sci. 42(2), 194–202 (2008)CrossRef X.-Q. Fang, C. Hu, Dynamic effective thermal properties of functionally graded fibrous composites using non-fourier heat conduction. Comput. Mater. Sci. 42(2), 194–202 (2008)CrossRef
265.
go back to reference A. Figueroa, F. Vázquez, Optimal performance and entropy generation transition from micro to nanoscaled thermoelectric layers. Int. J. Heat Mass Transf. 71, 724–731 (2014)CrossRef A. Figueroa, F. Vázquez, Optimal performance and entropy generation transition from micro to nanoscaled thermoelectric layers. Int. J. Heat Mass Transf. 71, 724–731 (2014)CrossRef
266.
go back to reference F. Vázquez, A. Figueroa, I. Rodriguez-Vargas, Nonlocal and memory effects in nanoscaled thermoelectric layers. J. Appl. Phys. 121(1), 014311 (2017)CrossRef F. Vázquez, A. Figueroa, I. Rodriguez-Vargas, Nonlocal and memory effects in nanoscaled thermoelectric layers. J. Appl. Phys. 121(1), 014311 (2017)CrossRef
267.
go back to reference J. Rojas, I. Rivera, A. Figueroa, F. Vázquez, Coupled thermoelectric devices: theory and experiment. Entropy 18(7), 255 (2016)MathSciNetCrossRef J. Rojas, I. Rivera, A. Figueroa, F. Vázquez, Coupled thermoelectric devices: theory and experiment. Entropy 18(7), 255 (2016)MathSciNetCrossRef
268.
go back to reference P. Rogolino, V.A. Cimmelli, Thermoelectric efficiency of graded sicge 1-c alloys. J. Appl. Phys. 124(9), 094301 (2018)CrossRef P. Rogolino, V.A. Cimmelli, Thermoelectric efficiency of graded sicge 1-c alloys. J. Appl. Phys. 124(9), 094301 (2018)CrossRef
269.
go back to reference P. Rogolino, A. Sellitto, V.A. Cimmelli, Minimal entropy production and efficiency of energy conversion in nonlinear thermoelectric systems with two temperatures. J. Non-Equilib. Thermodyn. 42(3), 287–303 (2017)CrossRef P. Rogolino, A. Sellitto, V.A. Cimmelli, Minimal entropy production and efficiency of energy conversion in nonlinear thermoelectric systems with two temperatures. J. Non-Equilib. Thermodyn. 42(3), 287–303 (2017)CrossRef
270.
go back to reference P. Rogolino, A. Sellitto, V.A. Cimmelli, Influence of nonlinear effects on the efficiency of a thermoelectric generator. Zeitschrift für angewandte Mathematik und Physik 66(5), 2829–2842 (2015)MathSciNetMATHCrossRef P. Rogolino, A. Sellitto, V.A. Cimmelli, Influence of nonlinear effects on the efficiency of a thermoelectric generator. Zeitschrift für angewandte Mathematik und Physik 66(5), 2829–2842 (2015)MathSciNetMATHCrossRef
271.
go back to reference B.-Y. Cao, M. Di Domenico, B.-D. Nie, A. Sellitto, Influence of the composition gradient on the propagation of heat pulses in functionally graded nanomaterials. Proc. R. Soc. A 475(2221), 20180499 (2019)MathSciNetCrossRef B.-Y. Cao, M. Di Domenico, B.-D. Nie, A. Sellitto, Influence of the composition gradient on the propagation of heat pulses in functionally graded nanomaterials. Proc. R. Soc. A 475(2221), 20180499 (2019)MathSciNetCrossRef
272.
go back to reference J. Sladek, V. Sladek, C. Zhang, Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Comput. Mater. Sci. 28(3–4), 494–504 (2003)CrossRef J. Sladek, V. Sladek, C. Zhang, Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Comput. Mater. Sci. 28(3–4), 494–504 (2003)CrossRef
273.
go back to reference H.J. Xu, Z.B. Xing, F.Q. Wang, Z.M. Cheng, Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem. Eng. Sci. (2018) H.J. Xu, Z.B. Xing, F.Q. Wang, Z.M. Cheng, Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem. Eng. Sci. (2018)
274.
go back to reference S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(2), 280–289 (1999)CrossRef S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(2), 280–289 (1999)CrossRef
275.
go back to reference J.A. Eastman, S.U.-S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)CrossRef J.A. Eastman, S.U.-S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)CrossRef
276.
go back to reference J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 6(6), 577–588 (2004)CrossRef J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 6(6), 577–588 (2004)CrossRef
277.
go back to reference X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRef X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRef
278.
go back to reference J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y.V. Tolmachev, Pa. Keblinski, L.-W. Hu, J.L. Alvarado et al., A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106(9), 094312 (2009) J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y.V. Tolmachev, Pa. Keblinski, L.-W. Hu, J.L. Alvarado et al., A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106(9), 094312 (2009)
279.
go back to reference J. Eapen, R. Rusconi, R. Piazza, S. Yip, The classical nature of thermal conduction in nanofluids. J. Heat Transf. 132(10), 102402 (2010)CrossRef J. Eapen, R. Rusconi, R. Piazza, S. Yip, The classical nature of thermal conduction in nanofluids. J. Heat Transf. 132(10), 102402 (2010)CrossRef
280.
go back to reference J.-H. Lee, S.-H. Lee, C. Choi, S. Jang, S. Choi, A review of thermal conductivity data, mechanisms and models for nanofluids. Int. J. Micro-Nano Scale Transp. (2011) J.-H. Lee, S.-H. Lee, C. Choi, S. Jang, S. Choi, A review of thermal conductivity data, mechanisms and models for nanofluids. Int. J. Micro-Nano Scale Transp. (2011)
281.
go back to reference S.K. Das, S.U.S. Choi, E. Hrishikesh, Patel. Heat transfer in nanofluids–a review. Heat Transf. Eng. 27(10), 3–19 (2006) S.K. Das, S.U.S. Choi, E. Hrishikesh, Patel. Heat transfer in nanofluids–a review. Heat Transf. Eng. 27(10), 3–19 (2006)
282.
go back to reference P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45(4), 855–863 (2002)MATHCrossRef P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45(4), 855–863 (2002)MATHCrossRef
283.
go back to reference S.U.S. Choi, Nanofluids: from vision to reality through research. J. Heat Transf. 131(3), 033106 (2009)CrossRef S.U.S. Choi, Nanofluids: from vision to reality through research. J. Heat Transf. 131(3), 033106 (2009)CrossRef
284.
go back to reference S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)MATHCrossRef S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)MATHCrossRef
285.
go back to reference L. Wang, J. Fan, Nanofluids research: key issues. Nanoscale Res. Lett. 5(8), 1241 (2010)CrossRef L. Wang, J. Fan, Nanofluids research: key issues. Nanoscale Res. Lett. 5(8), 1241 (2010)CrossRef
286.
go back to reference P. Vadasz, Heat transfer augmentation in nanofluids via nanofins. Nanoscale Res. Lett. 6(1), 154 (2011)CrossRef P. Vadasz, Heat transfer augmentation in nanofluids via nanofins. Nanoscale Res. Lett. 6(1), 154 (2011)CrossRef
287.
go back to reference J. Fan, L. Wang, Review of heat conduction in nanofluids. J. Heat Transf. 133(4), 040801 (2011)CrossRef J. Fan, L. Wang, Review of heat conduction in nanofluids. J. Heat Transf. 133(4), 040801 (2011)CrossRef
288.
go back to reference V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). part 1. synthesis and properties of nanofluids. Thermophys. Aeromech. 17(1), 1–14 (2010)CrossRef V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). part 1. synthesis and properties of nanofluids. Thermophys. Aeromech. 17(1), 1–14 (2010)CrossRef
289.
go back to reference V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). part 2. convective heat transfer. Thermophys. Aeromech. 17(2), 157–171 (2010)CrossRef V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). part 2. convective heat transfer. Thermophys. Aeromech. 17(2), 157–171 (2010)CrossRef
290.
go back to reference P. Vadasz, Heat conduction in nanofluid suspensions. J. Heat Transf. 128(5), 465–477 (2006)CrossRef P. Vadasz, Heat conduction in nanofluid suspensions. J. Heat Transf. 128(5), 465–477 (2006)CrossRef
291.
go back to reference J.J. Vadasz, S. Govender, Thermal wave effects on heat transfer enhancement in nanofluids suspensions. Int. J. Therm. Sci. 49(2), 235–242 (2010)CrossRef J.J. Vadasz, S. Govender, Thermal wave effects on heat transfer enhancement in nanofluids suspensions. Int. J. Therm. Sci. 49(2), 235–242 (2010)CrossRef
292.
go back to reference A.A. Mohamad, Myth about nano-fluid heat transfer enhancement. Int. J. Heat Mass Transf. 86, 397–403 (2015)CrossRef A.A. Mohamad, Myth about nano-fluid heat transfer enhancement. Int. J. Heat Mass Transf. 86, 397–403 (2015)CrossRef
294.
go back to reference P. Ván, G.G. Barnaföldi, T. Bulik, T. Biró, S. Czellár, M. Cieślar, Cs. Czanik, E. Dávid, E. Debreceni, M. Denys et al., Long term measurements from the Mátra Gravitational and Geophysical Laboratory (2018) arXiv:1811.05198 P. Ván, G.G. Barnaföldi, T. Bulik, T. Biró, S. Czellár, M. Cieślar, Cs. Czanik, E. Dávid, E. Debreceni, M. Denys et al., Long term measurements from the Mátra Gravitational and Geophysical Laboratory (2018) arXiv:​1811.​05198
295.
go back to reference T. Fülöp, P. Ván, A. Csatár, Elasticity, plasticity, rheology and thermal stress-an irreversible thermodynamical theory. Elastic 2(7) (2013) T. Fülöp, P. Ván, A. Csatár, Elasticity, plasticity, rheology and thermal stress-an irreversible thermodynamical theory. Elastic 2(7) (2013)
296.
go back to reference C. Asszonyi, A. Csatár, T. Fülöp. Elastic, thermal expansion, plastic and rheological processes-theory and experiment (2015) arXiv:1512.05863 C. Asszonyi, A. Csatár, T. Fülöp. Elastic, thermal expansion, plastic and rheological processes-theory and experiment (2015) arXiv:​1512.​05863
297.
go back to reference T. Fülöp, Cs. Asszonyi, P. Ván, Distinguished rheological models in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 27(6), 971–986 (2015) T. Fülöp, Cs. Asszonyi, P. Ván, Distinguished rheological models in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 27(6), 971–986 (2015)
298.
299.
go back to reference R. Kovács, On the rarefied gas experiments. Entropy 21(7), 718–730 (2019)CrossRef R. Kovács, On the rarefied gas experiments. Entropy 21(7), 718–730 (2019)CrossRef
301.
go back to reference J. Meixner, Absorption und Dispersion des Schalles in Gasen mit Chemisch Reagierenden und Anregbaren Komponenten. I. Teil. Annalen der Physik 435(6–7), 470–487 (1943)CrossRef J. Meixner, Absorption und Dispersion des Schalles in Gasen mit Chemisch Reagierenden und Anregbaren Komponenten. I. Teil. Annalen der Physik 435(6–7), 470–487 (1943)CrossRef
302.
go back to reference S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, 1963) S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, 1963)
303.
go back to reference M. Carrassi, A. Morro, A modified navier-stokes equation, and its consequences on sound dispersion. Il Nuovo Cimento B 9, 321–343 (1972)CrossRef M. Carrassi, A. Morro, A modified navier-stokes equation, and its consequences on sound dispersion. Il Nuovo Cimento B 9, 321–343 (1972)CrossRef
304.
go back to reference M. Carrassi, A. Morro, Some remarks about dispersion and absorption of sound in monatomic rarefied gases. Il Nuovo Cimento B 13, 281–289 (1973)CrossRef M. Carrassi, A. Morro, Some remarks about dispersion and absorption of sound in monatomic rarefied gases. Il Nuovo Cimento B 13, 281–289 (1973)CrossRef
305.
go back to reference D. Jou, C. Perez-Garcia, L.S. Garcia-Colin, M.L. De Haro, R.F. Rodriguez, Generalized hydrodynamics and extended irreversible thermodynamics. Phys. Rev. A 31(4), 2502 (1985)CrossRef D. Jou, C. Perez-Garcia, L.S. Garcia-Colin, M.L. De Haro, R.F. Rodriguez, Generalized hydrodynamics and extended irreversible thermodynamics. Phys. Rev. A 31(4), 2502 (1985)CrossRef
306.
go back to reference T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas (Springer, Berlin, 2015)MATHCrossRef T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas (Springer, Berlin, 2015)MATHCrossRef
307.
go back to reference T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25(6), 727–737 (2013)MathSciNetMATHCrossRef T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25(6), 727–737 (2013)MathSciNetMATHCrossRef
308.
go back to reference C.G. Sluijter, H.F.P. Knaap, J.J.M. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures I. Physica 30(4), 745–762 (1964)CrossRef C.G. Sluijter, H.F.P. Knaap, J.J.M. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures I. Physica 30(4), 745–762 (1964)CrossRef
309.
go back to reference E. Meyer, G. Sessler, Schallausbreitung in gasen bei hohen frequenzen und sehr niedrigen drucken. Zeitschrift für Physik 149, 15–39 (1957)MathSciNetCrossRef E. Meyer, G. Sessler, Schallausbreitung in gasen bei hohen frequenzen und sehr niedrigen drucken. Zeitschrift für Physik 149, 15–39 (1957)MathSciNetCrossRef
310.
go back to reference H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, Berlin, 2005) H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, Berlin, 2005)
312.
go back to reference J.E. Rhodes Jr., The velocity of sound in hydrogen when rotational degrees of freedom fail to be excited. Phys. Rev. 70(11–12), 932 (1946)CrossRef J.E. Rhodes Jr., The velocity of sound in hydrogen when rotational degrees of freedom fail to be excited. Phys. Rev. 70(11–12), 932 (1946)CrossRef
313.
go back to reference M. Greenspan, Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28(4), 644–648 (1956)CrossRef M. Greenspan, Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28(4), 644–648 (1956)CrossRef
314.
go back to reference C.G. Sluijter, H.F.P. Knaap, J.J.M. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures II. Physica 31(6), 915–940 (1965)CrossRef C.G. Sluijter, H.F.P. Knaap, J.J.M. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures II. Physica 31(6), 915–940 (1965)CrossRef
315.
go back to reference T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24(4–6), 271–292 (2012)MATHCrossRef T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24(4–6), 271–292 (2012)MATHCrossRef
316.
go back to reference T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376(44), 2799–2803 (2012)MathSciNetMATHCrossRef T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376(44), 2799–2803 (2012)MathSciNetMATHCrossRef
317.
go back to reference T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6–15 (2015)CrossRef T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6–15 (2015)CrossRef
318.
go back to reference H. Struchtrup, P. Taheri, Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Math. 76(5), 672–697 (2011)MathSciNetMATHCrossRef H. Struchtrup, P. Taheri, Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Math. 76(5), 672–697 (2011)MathSciNetMATHCrossRef
319.
go back to reference H. Struchtrup, Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16(11), 3921–3934 (2004)MathSciNetMATHCrossRef H. Struchtrup, Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16(11), 3921–3934 (2004)MathSciNetMATHCrossRef
320.
321.
go back to reference J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25 c up to 150-250 atmospheres. Project SQUID Technical Report, p. 33 (1969) J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25 c up to 150-250 atmospheres. Project SQUID Technical Report, p. 33 (1969)
322.
go back to reference J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25 c up to 150–250 atm. J. Chem. Phys. 9, 3856–3863 (1969)CrossRef J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25 c up to 150–250 atm. J. Chem. Phys. 9, 3856–3863 (1969)CrossRef
323.
go back to reference J.H. Dymond, Corrections to the Enskog theory for viscosity and thermal conductivity. Phys. B 144(3), 267–276 (1987)CrossRef J.H. Dymond, Corrections to the Enskog theory for viscosity and thermal conductivity. Phys. B 144(3), 267–276 (1987)CrossRef
324.
go back to reference W.M. Haynes, Viscosity of gaseous and liquid argon. Physica 67(3), 440–470 (1973)CrossRef W.M. Haynes, Viscosity of gaseous and liquid argon. Physica 67(3), 440–470 (1973)CrossRef
325.
go back to reference A. Van Itterbeek, W.H. Keesom, Measurements on the viscosity of helium gas between 293 and 1.6 k. Physica 5(4), 257–269 (1938)CrossRef A. Van Itterbeek, W.H. Keesom, Measurements on the viscosity of helium gas between 293 and 1.6 k. Physica 5(4), 257–269 (1938)CrossRef
326.
go back to reference A. Van Itterbeek, A. Claes, Measurements on the viscosity of hydrogen-and deuterium gas between 293 K and 14 K. Physica 5(10), 938–944 (1938)CrossRef A. Van Itterbeek, A. Claes, Measurements on the viscosity of hydrogen-and deuterium gas between 293 K and 14 K. Physica 5(10), 938–944 (1938)CrossRef
327.
go back to reference A. Van Itterbeek, O. Van Paemel, Measurements on the viscosity of gases for low pressures at room temperature and at low temperatures. Physica 7(3), 273–283 (1940)CrossRef A. Van Itterbeek, O. Van Paemel, Measurements on the viscosity of gases for low pressures at room temperature and at low temperatures. Physica 7(3), 273–283 (1940)CrossRef
328.
go back to reference D. Sette, A. Busala, J.C. Hubbard, Energy transfer by collisions in vapors of chlorinated methanes. J. Chem. Phys. 23(5), 787–793 (1955)CrossRef D. Sette, A. Busala, J.C. Hubbard, Energy transfer by collisions in vapors of chlorinated methanes. J. Chem. Phys. 23(5), 787–793 (1955)CrossRef
329.
go back to reference P.S. Van der Gulik, C.A. ten Seldam, Density dependence of the viscosity of some noble gases. Int. J. Thermophys. 23(1), 15–26 (2002)CrossRef P.S. Van der Gulik, C.A. ten Seldam, Density dependence of the viscosity of some noble gases. Int. J. Thermophys. 23(1), 15–26 (2002)CrossRef
330.
go back to reference R. Umla, V. Vesovic, Viscosity of liquids-Enskog-2\(\sigma \) model. Fluid Phase Equilib. 372, 34–42 (2014) R. Umla, V. Vesovic, Viscosity of liquids-Enskog-2\(\sigma \) model. Fluid Phase Equilib. 372, 34–42 (2014)
331.
go back to reference Y. Cohen, S.I. Sandler, The viscosity and thermal conductivity of simple dense gases. Ind. Eng. Chem. Fundam. 19(2), 186–188 (1980)CrossRef Y. Cohen, S.I. Sandler, The viscosity and thermal conductivity of simple dense gases. Ind. Eng. Chem. Fundam. 19(2), 186–188 (1980)CrossRef
332.
go back to reference P.S. Van der Gulik, N.J. Trappeniers, The viscosity of argon at high densities. Phys. A: Stat. Mech. Appl. 135(1), 1–20 (1986)CrossRef P.S. Van der Gulik, N.J. Trappeniers, The viscosity of argon at high densities. Phys. A: Stat. Mech. Appl. 135(1), 1–20 (1986)CrossRef
333.
go back to reference P.S. Van der Gulik, N.J. Trappeniers, Application of Enskog theory on the viscosity of argon. Phys. B+C 139, 137–139 (1986) P.S. Van der Gulik, N.J. Trappeniers, Application of Enskog theory on the viscosity of argon. Phys. B+C 139, 137–139 (1986)
334.
go back to reference V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluid. 9(4–5), 847–853 (2010)CrossRef V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluid. 9(4–5), 847–853 (2010)CrossRef
335.
go back to reference A. Beskok, G.E. Karniadakis, Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)CrossRef A. Beskok, G.E. Karniadakis, Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)CrossRef
336.
go back to reference E. Roohi, M. Darbandi, Extending the Navier-Stokes solutions to transition regime in two-dimensional micro-and nanochannel flows using information preservation scheme. Phys. Fluids 21(8), 082001 (2009)MATHCrossRef E. Roohi, M. Darbandi, Extending the Navier-Stokes solutions to transition regime in two-dimensional micro-and nanochannel flows using information preservation scheme. Phys. Fluids 21(8), 082001 (2009)MATHCrossRef
Metadata
Title
Nature Knows Better
Authors
Viktor Józsa
Róbert Kovács
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-33475-8_5