Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2018

05-10-2018

Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film

Authors: S. Gupta Chatterjee, S. Dey, D. Samanta, S. Santra, S. Chatterjee, P. K. Guha, Amit K. Chakraborty

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, metal oxide nanoparticles and their composites with graphene have received significant research attention in toxic gas sensor applications. Herein, we demonstrate a novel approach to develop a sensor by combining SnO2 nanoparticles and Ni-decorated natural cellulosic graphene (Ni-NCG) derived from lotus petals to form SnO2/Ni-NCG nanohybrid. The morphology, microstructure and elemental composition of the nanohybrids were investigated by a number of techniques which confirmed presence of nanometer sized SnO2 particles having large surface area on sheets of few layered Ni-decorated NCG. Upto 15% response was observed when exposed to 40 ppm of NO with high reproducibility at temperature as low as 60 °C which is remarkable when compared to previously reported SnO2 based NO sensors operating at high temperatures (~ 200 °C or more). Further, the nanohybrid showed excellent selectivity to NO when tested against other gases. A mechanism have been proposed for the improved sensitivity at low temperature based on the improved surface area of SnO2 nanoparticles leading to larger adsorption of gas molecules combined with an improved conduction of charges provided by the Ni-decorated NCG network. The results show enormous potential for the SnO2/Ni-NCG nanohybrid film as near room temperature NO sensor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)CrossRef R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)CrossRef
2.
go back to reference D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1124 (2004)CrossRef D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1124 (2004)CrossRef
3.
go back to reference L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009) L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)
4.
go back to reference C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRef C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRef
5.
go back to reference N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15, R813–R839 (2003)CrossRef N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15, R813–R839 (2003)CrossRef
6.
go back to reference A. Gurlo, Nanosensors: towards morphological control of gas sensing activity SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRef A. Gurlo, Nanosensors: towards morphological control of gas sensing activity SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRef
7.
go back to reference G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRef G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRef
8.
go back to reference N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B Chem. 121, 18–35 (2007)CrossRef N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B Chem. 121, 18–35 (2007)CrossRef
9.
go back to reference A. Lassesson, M. Schulze, J. van Lith, S.A. Brown, Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 19, 015502 (2008)CrossRef A. Lassesson, M. Schulze, J. van Lith, S.A. Brown, Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 19, 015502 (2008)CrossRef
10.
go back to reference X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20, 455503 (2009)CrossRef X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20, 455503 (2009)CrossRef
11.
go back to reference F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale. SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 22, 4821–4827 (2010)CrossRef F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale. SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 22, 4821–4827 (2010)CrossRef
12.
go back to reference G.K. Fan, Y. Wang, M. Hu, Z.Y. Luo, G. Li, Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas. Sci. Technol. 22, 045203 (2011)CrossRef G.K. Fan, Y. Wang, M. Hu, Z.Y. Luo, G. Li, Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas. Sci. Technol. 22, 045203 (2011)CrossRef
13.
go back to reference F. Li, Y. Chen, J. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175–7178 (2014)CrossRef F. Li, Y. Chen, J. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175–7178 (2014)CrossRef
14.
go back to reference T. Lv, Y. Chen, J. Ma, L. Chen, Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 4, 22487–22490 (2014)CrossRef T. Lv, Y. Chen, J. Ma, L. Chen, Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 4, 22487–22490 (2014)CrossRef
15.
go back to reference S. Liu, Y. Zhang, B. Yu, Z. Wang, H. Zhao, N. Zhou, T. Zhang, Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sens. Actuators B Chem. 210, 700–705 (2015)CrossRef S. Liu, Y. Zhang, B. Yu, Z. Wang, H. Zhao, N. Zhou, T. Zhang, Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sens. Actuators B Chem. 210, 700–705 (2015)CrossRef
16.
go back to reference A. Sarkar, S. Bera, A.K. Chakraborty, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 182, 314–320 (2018)CrossRef A. Sarkar, S. Bera, A.K. Chakraborty, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 182, 314–320 (2018)CrossRef
17.
go back to reference V. Meriga, V. Sreeramulu, S. Sundaresan, C. Cahill, V.R. Dhanak, A.K. Chakraborty, Optical, electrical and electrochemical properties of graphene based water soluble polyaniline composites. J. Appl. Polym. Sci. 132, 42766 (2015)CrossRef V. Meriga, V. Sreeramulu, S. Sundaresan, C. Cahill, V.R. Dhanak, A.K. Chakraborty, Optical, electrical and electrochemical properties of graphene based water soluble polyaniline composites. J. Appl. Polym. Sci. 132, 42766 (2015)CrossRef
18.
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef
19.
go back to reference R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 44, 1167–1176 (2010)CrossRef R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 44, 1167–1176 (2010)CrossRef
20.
go back to reference R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 153102 (2015)CrossRef R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 153102 (2015)CrossRef
21.
go back to reference P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)CrossRef P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)CrossRef
22.
go back to reference S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)CrossRef S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)CrossRef
23.
go back to reference M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)CrossRef M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)CrossRef
24.
go back to reference M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)CrossRef M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)CrossRef
25.
go back to reference M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)CrossRef M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)CrossRef
26.
go back to reference M.L. Yola, N. Atar, T. Eren, H.K. Maleh, S. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 5, 65953–65962 (2015)CrossRef M.L. Yola, N. Atar, T. Eren, H.K. Maleh, S. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 5, 65953–65962 (2015)CrossRef
27.
go back to reference M.L. Yola, N. Atar, Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 163, B718–B725 (2016)CrossRef M.L. Yola, N. Atar, Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 163, B718–B725 (2016)CrossRef
28.
go back to reference M.L. Yola, T. Eren, N. Atar, H. Saral, I. Ermiş, Direct-methanol Fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic, nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28, 570–579 (2016)CrossRef M.L. Yola, T. Eren, N. Atar, H. Saral, I. Ermiş, Direct-methanol Fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic, nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28, 570–579 (2016)CrossRef
29.
go back to reference O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, F.S. Tokal, M.L. Yola, N. Atar, Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int. J. Electrochem. Sci. 10, 7743–7753 (2015) O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, F.S. Tokal, M.L. Yola, N. Atar, Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int. J. Electrochem. Sci. 10, 7743–7753 (2015)
30.
go back to reference S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored Calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 28, 611–619 (2016)CrossRef S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored Calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 28, 611–619 (2016)CrossRef
31.
go back to reference Ö Aktaş, Y.F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)CrossRef Ö Aktaş, Y.F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)CrossRef
32.
go back to reference V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim. Acta 112, 541–548 (2013)CrossRef V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim. Acta 112, 541–548 (2013)CrossRef
33.
go back to reference Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21, 17360–17365 (2011)CrossRef Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21, 17360–17365 (2011)CrossRef
34.
go back to reference S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)CrossRef S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)CrossRef
35.
go back to reference G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B Chem. 179, 61–68 (2013)CrossRef G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B Chem. 179, 61–68 (2013)CrossRef
36.
go back to reference S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovskab, J. Chen, Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)CrossRef S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovskab, J. Chen, Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)CrossRef
37.
go back to reference H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRef H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRef
38.
go back to reference Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 242, 269–279 (2017)CrossRef Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 242, 269–279 (2017)CrossRef
39.
go back to reference H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi, J.H. Bang, P. Wu, S.S. Kim, Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interface 9, 31667–31682 (2017)CrossRef H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi, J.H. Bang, P. Wu, S.S. Kim, Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interface 9, 31667–31682 (2017)CrossRef
40.
go back to reference C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 244, 466–474 (2017)CrossRef C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 244, 466–474 (2017)CrossRef
41.
go back to reference Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interface 6, 2174–2184 (2014)CrossRef Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interface 6, 2174–2184 (2014)CrossRef
42.
go back to reference A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. Cryst. Eng. Commun. 13, 2487 (2011)CrossRef A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. Cryst. Eng. Commun. 13, 2487 (2011)CrossRef
43.
go back to reference A.K. Ray, R.K. Sahu, V. Rajinikanth, H. Bapari, M. Ghosh, P. Paul, Preparation and characterization of graphene and Ni-decorated graphene using flowerpetals as the precursor material. Carbon 50, 4123–4129 (2012)CrossRef A.K. Ray, R.K. Sahu, V. Rajinikanth, H. Bapari, M. Ghosh, P. Paul, Preparation and characterization of graphene and Ni-decorated graphene using flowerpetals as the precursor material. Carbon 50, 4123–4129 (2012)CrossRef
44.
go back to reference Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, X. Zhang, All-fiber Raman biosensor by combining reflection and transmission mode. IEEE Photon. Technol. Lett. 30, 387–390 (2018)CrossRef Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, X. Zhang, All-fiber Raman biosensor by combining reflection and transmission mode. IEEE Photon. Technol. Lett. 30, 387–390 (2018)CrossRef
45.
go back to reference S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 202, 272–278 (2014)CrossRef S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 202, 272–278 (2014)CrossRef
46.
go back to reference X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRef X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRef
47.
go back to reference R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 5, 5281 (2012)CrossRef R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 5, 5281 (2012)CrossRef
48.
go back to reference C.T. Lee, H.Y. Lee, Y.S. Chiu, Performance Improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3. IEEE Sens. J. 16, 7581–7585 (2016) C.T. Lee, H.Y. Lee, Y.S. Chiu, Performance Improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3. IEEE Sens. J. 16, 7581–7585 (2016)
49.
go back to reference H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sens. Actuators B Chem. 220, 398–405 (2015)CrossRef H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sens. Actuators B Chem. 220, 398–405 (2015)CrossRef
50.
go back to reference L. Wang, Y. Chen, J. Ma, L. Chen, Z. Xu, T. Wang, Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500-1–3500-6 (2013) L. Wang, Y. Chen, J. Ma, L. Chen, Z. Xu, T. Wang, Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500-1–3500-6 (2013)
Metadata
Title
Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film
Authors
S. Gupta Chatterjee
S. Dey
D. Samanta
S. Santra
S. Chatterjee
P. K. Guha
Amit K. Chakraborty
Publication date
05-10-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0149-z

Other articles of this Issue 23/2018

Journal of Materials Science: Materials in Electronics 23/2018 Go to the issue