Skip to main content
Top
Published in: Cognitive Computation 4/2017

11-05-2017

Neuron Pruning-Based Discriminative Extreme Learning Machine for Pattern Classification

Authors: Tan Guo, Lei Zhang, Xiaoheng Tan

Published in: Cognitive Computation | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extreme learning machine (ELM), as a newly developed learning paradigm for the generalized single hidden layer feedforward neural networks, has been widely studied due to its unique characteristics, i.e., fast training, good generalization, and universal approximation/classification ability. A novel framework of discriminative extreme learning machine (DELM) is developed for pattern classification. In DELM, the margins between different classes are enlarged as much as possible through a technique called ε-dragging. DELM is further extended to pruning DELM (P-DELM) using L2,1-norm regularization. The performance of DELM is compared with several state-of-the-art methods on public face databases. The simulation results show the effectiveness of DELM for face recognition when there are posture, facial expression, and illumination variations. P-DELM can distinguish the importance of different hidden neurons and remove the worthless ones. The model can achieve promising performance with fewer hidden neurons and less prediction time on several benchmark datasets. In DELM model, the margins between different classes are enlarged by learning a nonnegative label relaxation matrix. The experiments validate the effectiveness of DELM. Furthermore, DELM is extended to P-DELM based on L2,1-norm regularization. The developed P-DELM can naturally distinguish the importance of different hidden neurons, which will lead to a more compact network by neuron pruning. Experimental validations on some benchmark datasets show the advantages of the proposed P-DELM method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001. Clark A. Mindware: an introduction to the philosophy of cognitive science. New York: Oxford University Press; 2001.
3.
go back to reference Luo B, Hussain A, Mahmud M, et al. Advances in brain-inspired cognitive systems. Cogn Comput. 2016;8(5):795–6. Luo B, Hussain A, Mahmud M, et al. Advances in brain-inspired cognitive systems. Cogn Comput. 2016;8(5):795–6.
4.
go back to reference Zhang HY, Ji P, Wang JQ, et al. A neutrosophic normal cloud and its application in decision-making. Cogn Comput. 2016;8(4):1–21.CrossRef Zhang HY, Ji P, Wang JQ, et al. A neutrosophic normal cloud and its application in decision-making. Cogn Comput. 2016;8(4):1–21.CrossRef
5.
go back to reference Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems. Cogn Comput. 2016;8(5):924–34.CrossRef Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems. Cogn Comput. 2016;8(5):924–34.CrossRef
6.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning representation by backpropagating errors. Nature. 1986;323(6088):533–6.CrossRef Rumelhart DE, Hinton GE, Williams RJ. Learning representation by backpropagating errors. Nature. 1986;323(6088):533–6.CrossRef
7.
go back to reference Zhang L, Zhang D, Tian F. SVM and ELM: who wins? Object recognition with deep convolutional features from ImageNet. Comput Sci. 2015. Zhang L, Zhang D, Tian F. SVM and ELM: who wins? Object recognition with deep convolutional features from ImageNet. Comput Sci. 2015.
8.
go back to reference Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man CybernB Cybern. 2012;42(2):513–29.CrossRef Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man CybernB Cybern. 2012;42(2):513–29.CrossRef
9.
go back to reference Huang GB. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7(3):263–78.CrossRef Huang GB. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7(3):263–78.CrossRef
10.
go back to reference Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.CrossRefPubMed Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4):879–92.CrossRefPubMed
11.
go back to reference Huang GB, Li MB, Chen L, Siew CK. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71(4–6):576–83.CrossRef Huang GB, Li MB, Chen L, Siew CK. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71(4–6):576–83.CrossRef
12.
go back to reference Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.CrossRef Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6(3):376–90.CrossRef
13.
go back to reference Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol. 2016;37:66.CrossRefPubMed Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol. 2016;37:66.CrossRefPubMed
14.
go back to reference Huang G, Song S, Gupta JND, et al. Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern. 2014;44(12):2405–17.CrossRefPubMed Huang G, Song S, Gupta JND, et al. Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern. 2014;44(12):2405–17.CrossRefPubMed
15.
go back to reference Tang J, Deng C, Huang GB. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst. 2016;27(4):809–21.CrossRefPubMed Tang J, Deng C, Huang GB. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst. 2016;27(4):809–21.CrossRefPubMed
16.
go back to reference Lekamalage CL, Yang Y, Huang GB, et al. Dimension reduction with extreme learning machine. IEEE Trans Image Process. 2016;25(8):3906–18.CrossRef Lekamalage CL, Yang Y, Huang GB, et al. Dimension reduction with extreme learning machine. IEEE Trans Image Process. 2016;25(8):3906–18.CrossRef
17.
go back to reference Liu H, Sun F, Yu Y. Multitask extreme learning machine for visual tracking. Cogn Comput. 2014;6(3):391–404.CrossRef Liu H, Sun F, Yu Y. Multitask extreme learning machine for visual tracking. Cogn Comput. 2014;6(3):391–404.CrossRef
18.
go back to reference Liu H, Qin J, Sun F, et al. Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern, 2016. Liu H, Qin J, Sun F, et al. Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern, 2016.
19.
go back to reference Zhang L, Zhang D. Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Instrum Meas. 2015;64:1790–801.CrossRef Zhang L, Zhang D. Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Instrum Meas. 2015;64:1790–801.CrossRef
20.
go back to reference Zhang L, Zhang D. Robust visual knowledge transfer via extreme learning machine based domain adaptation. IEEE Trans Image Process. 2016;25(10):4959–73.CrossRef Zhang L, Zhang D. Robust visual knowledge transfer via extreme learning machine based domain adaptation. IEEE Trans Image Process. 2016;25(10):4959–73.CrossRef
21.
go back to reference Rong HJ, Ong YS, Tan AH, et al. A fast pruned-extreme learning machine for classification problem. Neurocomputing. 2008;72(1–3):359–66.CrossRef Rong HJ, Ong YS, Tan AH, et al. A fast pruned-extreme learning machine for classification problem. Neurocomputing. 2008;72(1–3):359–66.CrossRef
22.
go back to reference Lan Y, Soh YC, Huang GB. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing. 2010;73(16–18):3191–9.CrossRef Lan Y, Soh YC, Huang GB. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing. 2010;73(16–18):3191–9.CrossRef
23.
go back to reference Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21(1):158–62.CrossRefPubMed Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw. 2010;21(1):158–62.CrossRefPubMed
24.
go back to reference He B, Sun T, Yan T, et al. A pruning ensemble model of extreme learning machine with L1/2 regularizer. Multidimension Syst Signal Process. 2016:1–19. He B, Sun T, Yan T, et al. A pruning ensemble model of extreme learning machine with L1/2 regularizer. Multidimension Syst Signal Process. 2016:1–19.
25.
go back to reference Xiang S, Nie F, Meng G, et al. Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learn Syst. 2012;23(11):1738–54.CrossRefPubMed Xiang S, Nie F, Meng G, et al. Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learn Syst. 2012;23(11):1738–54.CrossRefPubMed
26.
go back to reference Liu H. Robust exemplar extraction using structured sparse coding. IEEE Trans Neural Netw Learn Syst. 2015;26(8):1816–21.CrossRefPubMed Liu H. Robust exemplar extraction using structured sparse coding. IEEE Trans Neural Netw Learn Syst. 2015;26(8):1816–21.CrossRefPubMed
27.
go back to reference Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas. 2016;65(3):656–65.CrossRef Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas. 2016;65(3):656–65.CrossRef
28.
go back to reference Nie F, Huang H, Cai X, et al. Efficient and robust feature selection via joint ℓ2, 1-norms minimization. Adv Neural Info Process Syst. 2010:1813–1821. Nie F, Huang H, Cai X, et al. Efficient and robust feature selection via joint ℓ2, 1-norms minimization. Adv Neural Info Process Syst. 2010:1813–1821.
29.
go back to reference Zhao W, Chellappa R, Phillips J, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.CrossRef Zhao W, Chellappa R, Phillips J, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.CrossRef
30.
go back to reference Samaria F S, Harter A C. Harter, A.: Parameterisation of a stochastic model for human face identification[C]// Applications of computer vision, 1994. Proceedings of the Second IEEE Workshop on. 1995:138–142. Samaria F S, Harter A C. Harter, A.: Parameterisation of a stochastic model for human face identification[C]// Applications of computer vision, 1994. Proceedings of the Second IEEE Workshop on. 1995:138–142.
31.
go back to reference Rizon M, Hashim MF, Saad P, et al. Face recognition using eigenfaces and neural networks. Am J Appl Sci. 2006;3(6):586–91. Rizon M, Hashim MF, Saad P, et al. Face recognition using eigenfaces and neural networks. Am J Appl Sci. 2006;3(6):586–91.
32.
go back to reference Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell. 2001;23(6):643–60.CrossRef Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell. 2001;23(6):643–60.CrossRef
33.
go back to reference Martinez, A. M. The AR face database. Cvc Technical Report, 2010, 24. Martinez, A. M. The AR face database. Cvc Technical Report, 2010, 24.
34.
go back to reference Vapnik V. Statistical learning theory. New York: Wiley; 1998. Vapnik V. Statistical learning theory. New York: Wiley; 1998.
35.
go back to reference Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.CrossRef Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.CrossRef
36.
go back to reference M. Turk, A. Pentland, Face recognition using eigenfaces. In: Proceeding of the CVPR, 1991. M. Turk, A. Pentland, Face recognition using eigenfaces. In: Proceeding of the CVPR, 1991.
38.
go back to reference S. A. Nene, S. K. Nayar, H. Murase, et al., Columbia object image library (COIL-20), Technical report, technical report CUCS-005-96, 1996. S. A. Nene, S. K. Nayar, H. Murase, et al., Columbia object image library (COIL-20), Technical report, technical report CUCS-005-96, 1996.
39.
go back to reference Yu J, Tao D, Wang M, Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process. 2012;21(7):3262–72.CrossRefPubMed Yu J, Tao D, Wang M, Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process. 2012;21(7):3262–72.CrossRefPubMed
40.
go back to reference G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset, Technical Report, California Institute of Technology, 2007. G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset, Technical Report, California Institute of Technology, 2007.
41.
go back to reference Bergamo A, Torresani L, Fitzgibbon A. PICODES: learning a compact code for novel-category recognition. Adv Neural Info Process Syst. 2011:2088–2096. Bergamo A, Torresani L, Fitzgibbon A. PICODES: learning a compact code for novel-category recognition. Adv Neural Info Process Syst. 2011:2088–2096.
42.
go back to reference Liu H, Yu Y, Sun F, et al. Visual-tactile fusion for object recognition. IEEE Trans Automation Sci Eng. 2016:1–13. Liu H, Yu Y, Sun F, et al. Visual-tactile fusion for object recognition. IEEE Trans Automation Sci Eng. 2016:1–13.
Metadata
Title
Neuron Pruning-Based Discriminative Extreme Learning Machine for Pattern Classification
Authors
Tan Guo
Lei Zhang
Xiaoheng Tan
Publication date
11-05-2017
Publisher
Springer US
Published in
Cognitive Computation / Issue 4/2017
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9474-4

Other articles of this Issue 4/2017

Cognitive Computation 4/2017 Go to the issue

Premium Partner