Skip to main content
Top
Published in: Cognitive Computation 4/2017

08-05-2017

DOA Estimation of Excavation Devices with ELM and MUSIC-Based Hybrid Algorithm

Authors: Jianzhong Wang, Kai Ye, Jiuwen Cao, Tianlei Wang, Anke Xue, Yuhua Cheng, Chun Yin

Published in: Cognitive Computation | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Underground pipelines suffered severe external breakage caused by excavation devices due to arbitral road excavation. Acoustic signal-based recognition has recently shown effectiveness in underground pipeline network surveillance. However, merely relying on recognition may lead to a high false alarm rate. The reason is that underground pipelines are generally paved along a fixed direction and excavations out of the region also trigger the surveillance system. To enhance the reliability of the surveillance system, the direction-of-arrival (DOA) estimation of target sources is combined into the recognition algorithm to reduce false detections in this paper. Two hybrid recognition algorithms are developed. The first one employs extreme learning machine (ELM) for acoustic recognition followed by a focusing matrix-based multiple signal classification algorithm (ELM-MUSIC) for DOA estimation. The second introduces a decision matrix (DM) to characterize the statistic distribution of results obtained by ELM-MUSIC. Real acoustic signals collected by a cross-layer sensor array are conducted for performance comparison. Four representative excavation devices working in a metro construction site are used to generate the signal. Multiple scenarios of the experiments are designed. Comparisons show that the proposed ELM-MUSIC and DM algorithms outperform the conventional focusing matrix based MUSIC (F-MUSIC). In addition, the improved DM method is capable of localizing multiple devices working in order. Two hybrid acoustic signal recognition and source direction estimation algorithms are developed for excavation device classification in this paper. The novel recognition combining DOA estimation scheme can work efficiently for underground pipeline network protection in the real-world complex environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Messaoud MA, Bouzid A, Ellouze N. A new biologically inspired fuzzy expert system-based voiced/unvoiced decision algorithm for speech enhancement. Cogn Comput. 2016;8:478–93.CrossRef Messaoud MA, Bouzid A, Ellouze N. A new biologically inspired fuzzy expert system-based voiced/unvoiced decision algorithm for speech enhancement. Cogn Comput. 2016;8:478–93.CrossRef
2.
go back to reference Scardapane S, Uncini A. Semi-supervised echo state networks for audio classification. Cogn Comput. 2017; 9:125–35.CrossRef Scardapane S, Uncini A. Semi-supervised echo state networks for audio classification. Cogn Comput. 2017; 9:125–35.CrossRef
3.
go back to reference López-de-Ipiña K, Alonso J, Solé-Casals J, Barroso N, Henriquez P, Faundez-Zanuy M, Travieso C, Ecay-Torres M, Martínez-Lage P, Eguiraun H. On automatic diagnosis of Alzheimers disease based on spontaneous speech analysis and emotional temperature. Cogn Comput. 2015;7:44–55.CrossRef López-de-Ipiña K, Alonso J, Solé-Casals J, Barroso N, Henriquez P, Faundez-Zanuy M, Travieso C, Ecay-Torres M, Martínez-Lage P, Eguiraun H. On automatic diagnosis of Alzheimers disease based on spontaneous speech analysis and emotional temperature. Cogn Comput. 2015;7:44–55.CrossRef
4.
go back to reference Alam MdJ, Kenny P, Shaughnessy D. Low-variance multitaper mel-frequency cepstral coefficient features for speech and speaker recognition systems. Cogn Comput. 2013;5:533–44.CrossRef Alam MdJ, Kenny P, Shaughnessy D. Low-variance multitaper mel-frequency cepstral coefficient features for speech and speaker recognition systems. Cogn Comput. 2013;5:533–44.CrossRef
6.
go back to reference Cao J, Huang W, Zhao T, Wang J, Wang R. 2015. An enhance excavation equipments classification algorithm based on acoustic spectrum dynamic feature. Multidimen Syst Signal Process. doi:10.1007/s11045-015-0374-z. Cao J, Huang W, Zhao T, Wang J, Wang R. 2015. An enhance excavation equipments classification algorithm based on acoustic spectrum dynamic feature. Multidimen Syst Signal Process. doi:10.​1007/​s11045-015-0374-z.
8.
go back to reference Cao J, Wang T, Shang L, Lai X, Vong C-M, Chen B. 2017. An intelligent propagation distance estimation algorithm based on fundamental frequency energy distribution for periodic vibration localization. J Franklin Instit. doi:10.1016/j.jfranklin.2017.02.011. Cao J, Wang T, Shang L, Lai X, Vong C-M, Chen B. 2017. An intelligent propagation distance estimation algorithm based on fundamental frequency energy distribution for periodic vibration localization. J Franklin Instit. doi:10.​1016/​j.​jfranklin.​2017.​02.​011.
9.
go back to reference Rezazadeh Azar E, McCabe B. 2011. Vision-based equipment detection in construction images. In: The 3rd International/9th construction specialty conference. Ottawa; Accepted. Rezazadeh Azar E, McCabe B. 2011. Vision-based equipment detection in construction images. In: The 3rd International/9th construction specialty conference. Ottawa; Accepted.
10.
go back to reference Rezazadeh Azar E, McCabe B. Part based model and spatialtemporal reasoning to recognize hydraulic excavators in construction images and videos. Autom Constr. 2012;24(7):194–202.CrossRef Rezazadeh Azar E, McCabe B. Part based model and spatialtemporal reasoning to recognize hydraulic excavators in construction images and videos. Autom Constr. 2012;24(7):194–202.CrossRef
11.
go back to reference Golparvar-Fard M, Heydarian A, Niebles JC. Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Adv Eng Inform. 2013;27(4):652–63.CrossRef Golparvar-Fard M, Heydarian A, Niebles JC. Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Adv Eng Inform. 2013;27(4):652–63.CrossRef
12.
go back to reference Akhavian R, Behzadan AH. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers. Adv Eng Inform. 2015;29(4):867–77.CrossRef Akhavian R, Behzadan AH. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers. Adv Eng Inform. 2015;29(4):867–77.CrossRef
13.
go back to reference Makhmalbaf A, Park MW, Yang J, Brilakis I, Vela PA. 2010. 2D vision tracking methods performance comparison for 3D tracking of construction resources. In: Proceeding of the construction research congress. Banff; p. 459–469. Makhmalbaf A, Park MW, Yang J, Brilakis I, Vela PA. 2010. 2D vision tracking methods performance comparison for 3D tracking of construction resources. In: Proceeding of the construction research congress. Banff; p. 459–469.
14.
go back to reference Li J, Ping L. Study on feature extraction method for typical abnormal events of buried pipelines. Chin J Sensors Actuat 2010;23(7):968–72. Li J, Ping L. Study on feature extraction method for typical abnormal events of buried pipelines. Chin J Sensors Actuat 2010;23(7):968–72.
15.
go back to reference Wang Y, Li J, He P. The study of the automatic identification technology for mobile vehicles in road traffic management. Microcomput Inf. 2006;193–5. Wang Y, Li J, He P. The study of the automatic identification technology for mobile vehicles in road traffic management. Microcomput Inf. 2006;193–5.
16.
go back to reference Cortes C, Vapnik V. Support vector networks. Mach Learn. 1995;20:273–97. Cortes C, Vapnik V. Support vector networks. Mach Learn. 1995;20:273–97.
17.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.CrossRef Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.CrossRef
18.
go back to reference Huang G-B. What are extreme learning machines? Filling the gap between Frank Rosenblatts dream and John von Neumanns puzzle. Cogn Comput. 2015;7:263–8.CrossRef Huang G-B. What are extreme learning machines? Filling the gap between Frank Rosenblatts dream and John von Neumanns puzzle. Cogn Comput. 2015;7:263–8.CrossRef
19.
go back to reference Xu L, Ding S, Xu X, Zhang N. Self-adaptive extreme learning machine optimized by rough set theory and affinity propagation clustering. Cogn Comput. 2016;8(4):720–8.CrossRef Xu L, Ding S, Xu X, Zhang N. Self-adaptive extreme learning machine optimized by rough set theory and affinity propagation clustering. Cogn Comput. 2016;8(4):720–8.CrossRef
20.
go back to reference Wong P, Gao X, Wong K, Vong C-M. An analytical study on reasoning of extreme learning machine for classification from its inductive bias. Cogn Comput. 2016;8(4):746–56.CrossRef Wong P, Gao X, Wong K, Vong C-M. An analytical study on reasoning of extreme learning machine for classification from its inductive bias. Cogn Comput. 2016;8(4):746–56.CrossRef
21.
go back to reference Vong C-M, Ip W-F, Chiu C-C, Wong P. Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cogn Comput. 2015;7(3):381–91.CrossRef Vong C-M, Ip W-F, Chiu C-C, Wong P. Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cogn Comput. 2015;7(3):381–91.CrossRef
22.
go back to reference Sachnev S, Ramasamy S, Sundaram S, Kim H, Hwang H. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2015;7(1):103–10.CrossRef Sachnev S, Ramasamy S, Sundaram S, Kim H, Hwang H. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2015;7(1):103–10.CrossRef
25.
go back to reference Wang B, Zhu R, Luo S, Yang X, Wang G. H-MRST: a novel framework for supporting probability degree range query using extreme learning machine. Cogn Comput. 2017;9:68–80.CrossRef Wang B, Zhu R, Luo S, Yang X, Wang G. H-MRST: a novel framework for supporting probability degree range query using extreme learning machine. Cogn Comput. 2017;9:68–80.CrossRef
26.
go back to reference Liu N, Sakamoto J, Cao J, Koh Z, Ho A, Lin Z, Ong M. 2017. Ensemble-based risk scoring with extreme learning machine for prediction of adverse cardiac events. Cogn Comput. doi:10.1007/s12559-017-9455-7. Liu N, Sakamoto J, Cao J, Koh Z, Ho A, Lin Z, Ong M. 2017. Ensemble-based risk scoring with extreme learning machine for prediction of adverse cardiac events. Cogn Comput. doi:10.​1007/​s12559-017-9455-7.
27.
go back to reference Cao J, Zhang K, Luo M, Yin C, Lai X. Extreme learning machine and adaptive sparse representation for image classification. Neural Netw. 2016;81:91–102.CrossRefPubMed Cao J, Zhang K, Luo M, Yin C, Lai X. Extreme learning machine and adaptive sparse representation for image classification. Neural Netw. 2016;81:91–102.CrossRefPubMed
28.
go back to reference Cao J, Chen T, Fan J. Landmark recognition with compact BoW histogram and ensemble ELM. Multimed Tools Appl. 2016;75(5):2839–57.CrossRef Cao J, Chen T, Fan J. Landmark recognition with compact BoW histogram and ensemble ELM. Multimed Tools Appl. 2016;75(5):2839–57.CrossRef
29.
go back to reference Cao J, Lin Z. Bayesian signal detection with compressed measurements. Inform Sci. 2014;289(1):241–53.CrossRef Cao J, Lin Z. Bayesian signal detection with compressed measurements. Inform Sci. 2014;289(1):241–53.CrossRef
30.
go back to reference Cao J, Lin Z. Extreme learning machines on high dimensional and large data applications: a survey. Math Probl Eng. 2015;2015:1–12. Cao J, Lin Z. Extreme learning machines on high dimensional and large data applications: a survey. Math Probl Eng. 2015;2015:1–12.
31.
go back to reference Huang Z, Yu Y, Gu J, Liu H. 2016. An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans Cybern online. Huang Z, Yu Y, Gu J, Liu H. 2016. An efficient method for traffic sign recognition based on extreme learning machine. IEEE Trans Cybern online.
32.
go back to reference Liu H, Sun F, Fang B, Zhang X. Robotic room-level localization using multiple sets of sonar measurements. IEEE Trans Instrum Measur 2016;PP(99):1–12.CrossRef Liu H, Sun F, Fang B, Zhang X. Robotic room-level localization using multiple sets of sonar measurements. IEEE Trans Instrum Measur 2016;PP(99):1–12.CrossRef
33.
go back to reference Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas. 2016;65(3):656–65.CrossRef Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas. 2016;65(3):656–65.CrossRef
34.
go back to reference Chen B, Zhao S, Zhu P, Principe JC. Quantized kernel least mean square algorithm. IEEE Trans Neural Netw Learn Syst. 2012;23(1):22c32. Chen B, Zhao S, Zhu P, Principe JC. Quantized kernel least mean square algorithm. IEEE Trans Neural Netw Learn Syst. 2012;23(1):22c32.
35.
go back to reference Chen B, Zhao S, Zhu P, Principe JC. Quantized kernel recursive least squares algorithm. IEEE Trans Neural Netw Learn Syst. 2013;24(9):1484–91.CrossRefPubMed Chen B, Zhao S, Zhu P, Principe JC. Quantized kernel recursive least squares algorithm. IEEE Trans Neural Netw Learn Syst. 2013;24(9):1484–91.CrossRefPubMed
36.
go back to reference Nan S, Sun L, Chen B, Lin Z, Toh K.-A. Density-dependent quantized least squares support vector machine for large data sets. IEEE Trans Neural Netw Learn Syst. 2017;28(1):94–106.CrossRefPubMed Nan S, Sun L, Chen B, Lin Z, Toh K.-A. Density-dependent quantized least squares support vector machine for large data sets. IEEE Trans Neural Netw Learn Syst. 2017;28(1):94–106.CrossRefPubMed
37.
go back to reference Zhao S, Chen B, Cao Z, Zhu P, Principe J C. Self-organizing kernel adaptive filtering. EURASIP J Adv Signal Process. 2016;106. Zhao S, Chen B, Cao Z, Zhu P, Principe J C. Self-organizing kernel adaptive filtering. EURASIP J Adv Signal Process. 2016;106.
38.
go back to reference Wu H, Wu Y, Liu C, Yang G, Qin S. Fast robot localization approach based on manifold regularization with sparse area features. Cogn Comput. 2016;8:856–76.CrossRef Wu H, Wu Y, Liu C, Yang G, Qin S. Fast robot localization approach based on manifold regularization with sparse area features. Cogn Comput. 2016;8:856–76.CrossRef
39.
go back to reference Jiang X, Ren P, Luo C. A sensor self-aware distributed consensus filter for simultaneous localization and tracking. Cogn Comput. 2016;8:828–38.CrossRef Jiang X, Ren P, Luo C. A sensor self-aware distributed consensus filter for simultaneous localization and tracking. Cogn Comput. 2016;8:828–38.CrossRef
40.
go back to reference Doron M, Weiss A. On focusing matrices for wide-band array processing. IEEE Trans Signal Process. 1992; 40(6):1295– 1302.CrossRef Doron M, Weiss A. On focusing matrices for wide-band array processing. IEEE Trans Signal Process. 1992; 40(6):1295– 1302.CrossRef
41.
go back to reference Hong W, Tewfik A. 1992. Focusing matrices for wideband array processing with no a priori angle estimates. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing. San Francisco; p. 493–496. Hong W, Tewfik A. 1992. Focusing matrices for wideband array processing with no a priori angle estimates. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing. San Francisco; p. 493–496.
42.
go back to reference Pan Y, Lu H, Zhu H, Yuan N. 2015. DOA estimation for coherent and incoherent wideband sources via sparse representation of the focused array covariance vectors. In: Proceedings of IEEE China summit and international conference on signal and information processing. Chengdu; p. 403–407. Pan Y, Lu H, Zhu H, Yuan N. 2015. DOA estimation for coherent and incoherent wideband sources via sparse representation of the focused array covariance vectors. In: Proceedings of IEEE China summit and international conference on signal and information processing. Chengdu; p. 403–407.
43.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolutional neural networks. In: Conference and workshop on neural information processing systems; vol. 25. Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolutional neural networks. In: Conference and workshop on neural information processing systems; vol. 25.
44.
go back to reference LeCun Y, Bottou L, Orr G, Muller K. Efficient backprop. In: Orr G and Muller K, editors. Neural networks: tricks of the trade. Springer; 1998. LeCun Y, Bottou L, Orr G, Muller K. Efficient backprop. In: Orr G and Muller K, editors. Neural networks: tricks of the trade. Springer; 1998.
46.
go back to reference Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingbury B. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag. 2012;29(6):82–97.CrossRef Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingbury B. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag. 2012;29(6):82–97.CrossRef
47.
go back to reference Tang J, Deng C, Huang G-B. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst. 2016;27(4):809–21.CrossRefPubMed Tang J, Deng C, Huang G-B. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst. 2016;27(4):809–21.CrossRefPubMed
48.
go back to reference Wong C-M, Vong C-M, Wong P-K, Cao J. Kernel-based multilayer extreme learning machines for representation learning. IEEE Trans Neural Netw Learn Syst. 2016;PP(99):1–6. Wong C-M, Vong C-M, Wong P-K, Cao J. Kernel-based multilayer extreme learning machines for representation learning. IEEE Trans Neural Netw Learn Syst. 2016;PP(99):1–6.
49.
go back to reference Liu H, Sun F, Guo D, Fang B, Peng Z. Structured output-associated dictionary learning for haptic understanding. IEEE Trans Syst Man Cybern Syst. 2016;PP(99):1–11. Liu H, Sun F, Guo D, Fang B, Peng Z. Structured output-associated dictionary learning for haptic understanding. IEEE Trans Syst Man Cybern Syst. 2016;PP(99):1–11.
50.
go back to reference Liu H, Qin J, Sun F, Guo D. Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern. 2016;PP(99):1–12. Liu H, Qin J, Sun F, Guo D. Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern. 2016;PP(99):1–12.
51.
go back to reference Cao J, Liu J, Wang J, Lai X. Acoustic vector sensor: reviews and future perspectives. IET Signal Process. 2017;11(1):1–9.CrossRef Cao J, Liu J, Wang J, Lai X. Acoustic vector sensor: reviews and future perspectives. IET Signal Process. 2017;11(1):1–9.CrossRef
52.
go back to reference Gupta P, Kar S. 2015. MUSIC and improved MUSIC algorithm to estimate direction of arrival. In: Proceedings of international conference on communications and signal processing. Melmaruvathur; p. 0757–0761. Gupta P, Kar S. 2015. MUSIC and improved MUSIC algorithm to estimate direction of arrival. In: Proceedings of international conference on communications and signal processing. Melmaruvathur; p. 0757–0761.
53.
go back to reference Yin C, Chen Y, Zhong S. Fractional-order sliding mode based extremum seeking control of a class of nonlinear system. Automatica 2014;50:3173–81.CrossRef Yin C, Chen Y, Zhong S. Fractional-order sliding mode based extremum seeking control of a class of nonlinear system. Automatica 2014;50:3173–81.CrossRef
54.
go back to reference Yin C, Cheng Y, Chen Y Q, Stark B, Zhong SM. Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlin Dyn. 2015;82:39–52.CrossRef Yin C, Cheng Y, Chen Y Q, Stark B, Zhong SM. Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlin Dyn. 2015;82:39–52.CrossRef
55.
go back to reference Lai X, Lin Z. Optimal design of constrained FIR filters without phase response specifications. IEEE Trans Signal Process. 2014;62(17):4532–46.CrossRef Lai X, Lin Z. Optimal design of constrained FIR filters without phase response specifications. IEEE Trans Signal Process. 2014;62(17):4532–46.CrossRef
56.
go back to reference Lai X, Lin Z. Iterative reweighted minimax phase error designs of IIR digital filters with nearly linear phases. IEEE Trans Signal Process. 2016;64(9):2416–28.CrossRef Lai X, Lin Z. Iterative reweighted minimax phase error designs of IIR digital filters with nearly linear phases. IEEE Trans Signal Process. 2016;64(9):2416–28.CrossRef
Metadata
Title
DOA Estimation of Excavation Devices with ELM and MUSIC-Based Hybrid Algorithm
Authors
Jianzhong Wang
Kai Ye
Jiuwen Cao
Tianlei Wang
Anke Xue
Yuhua Cheng
Chun Yin
Publication date
08-05-2017
Publisher
Springer US
Published in
Cognitive Computation / Issue 4/2017
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9475-3

Other articles of this Issue 4/2017

Cognitive Computation 4/2017 Go to the issue

Premium Partner