Skip to main content
Top
Published in: Optical and Quantum Electronics 8/2020

01-08-2020

New compact of absorber thermal surface

Authors: A. Nagy Asl, Bedir Yousif, Mahmoud Alzalabani

Published in: Optical and Quantum Electronics | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Frequency-selective heat infrared (IR) detectors are promising for numerous new apps such as solar cell detection, gas analysis, multi-color imaging, multi-channel detector, recognition of artificial objects in a natural setting, but these features involve extra filters which lead to elevated costs. Plasmonic metamaterial absorbers (PMAs) can impart frequency selectivity to standard heat, IR detectors merely by regulating the absorber surface geometry to generate surface plasmon resonance at the desired frequency. We present a nanoantenna-based mid-infrared absorber for heat infrared detectors. Our structure uses a portion of the noble metal used in standard absorbers and is only one layer thick, which enables incredibly tiny thermal conductivity leading to possibly very low thermal detector noise. Simulation results show that the proposed nanoantennas can achieve a harvesting efficiency of 40% at a frequency of 150 THz where the antenna input impedance is matched to that of fabricated rectifying devices. Achieve maximum bandwidth Absorber from 100 to 200 THz for application purposes energy harvesting sensor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adato, R., Yanik, A.A., Amsden, J.J., et al.: Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009)ADS Adato, R., Yanik, A.A., Amsden, J.J., et al.: Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009)ADS
go back to reference Ameling, R., Langguth, L., Hentschel, M., Meshch, M., Braun, P.V., Giessen, H.: Cavityenhanced localized plasmon resonance sensing. Appl. Phys. Lett. 97, 253116 (2010)ADS Ameling, R., Langguth, L., Hentschel, M., Meshch, M., Braun, P.V., Giessen, H.: Cavityenhanced localized plasmon resonance sensing. Appl. Phys. Lett. 97, 253116 (2010)ADS
go back to reference Artar, A., Yanik, A.A., Altug, H.: Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 95, 767–768 (2009) Artar, A., Yanik, A.A., Altug, H.: Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 95, 767–768 (2009)
go back to reference Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADS Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADS
go back to reference Aydin, K., Ferry, V.E., Briggs, R.M., Atwater, H.A.: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011)ADS Aydin, K., Ferry, V.E., Briggs, R.M., Atwater, H.A.: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011)ADS
go back to reference Chau, Y.F., et al.: Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanopart. Res. 15, 1424 (2013)ADS Chau, Y.F., et al.: Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanopart. Res. 15, 1424  (2013)ADS
go back to reference Chau, Y.F.C., Chao, C.T.C., Chiang, H.P., Lim, C.M., Voo, N.Y., Mahadi, A.H.: Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res. 20, 190 (2018)ADS Chau, Y.F.C., Chao, C.T.C., Chiang, H.P., Lim, C.M., Voo, N.Y., Mahadi, A.H.: Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res. 20, 190  (2018)ADS
go back to reference Chau, Y.F.C., Chao, C.T.C., Rao, J.Y., Chiang, H.P., Lim, C.M., Lim, R.C., Voo, N.Y.: Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res. Lett. 11, 411 (2016)ADS Chau, Y.F.C., Chao, C.T.C., Rao, J.Y., Chiang, H.P., Lim, C.M., Lim, R.C., Voo, N.Y.: Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res. Lett. 11, 411 (2016)ADS
go back to reference Chau, Y.F.C., Wang, C.K., Shen, L., Lim, C.M., Chiang, H.P., Chou, C.T.C., Huang, H.J., Lin, C.T., Kumara, N.T.R.N., Voo, N.Y.: Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 7, 16817 (2017)ADS Chau, Y.F.C., Wang, C.K., Shen, L., Lim, C.M., Chiang, H.P., Chou, C.T.C., Huang, H.J., Lin, C.T., Kumara, N.T.R.N., Voo, N.Y.: Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 7, 16817 (2017)ADS
go back to reference Chau, Y.F., Yeh, H.H., Tsai, D.P.: A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J. Electromagn. Waves Appl. 24(13), 1621–1632 (2010) Chau, Y.F., Yeh, H.H., Tsai, D.P.: A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J. Electromagn. Waves Appl. 24(13), 1621–1632 (2010)
go back to reference Chen, K., Dao, T.D., Ishii, S., Aono, M., Nagao, T.: Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv. Funct. Mater. 25, 6637–6643 (2015) Chen, K., Dao, T.D., Ishii, S., Aono, M., Nagao, T.: Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv. Funct. Mater. 25, 6637–6643 (2015)
go back to reference Chen, J., Zhang, H., Liu, G., Liu, J., Liu, Y., Tang, L., Liu, Z.: High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279–283 (2019) Chen, J., Zhang, H., Liu, G., Liu, J., Liu, Y., Tang, L., Liu, Z.: High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279–283 (2019)
go back to reference Cheng, Y., Luo, H., Chen, F., Gong, R.: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Continuum 2, 2113–2122 (2019) Cheng, Y., Luo, H., Chen, F., Gong, R.: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Continuum 2, 2113–2122 (2019)
go back to reference Chou, Y.F.C.: Plasmonic effects in the enclosed and opened metallodielectric bowtie nanostructures. Opt. Commum. 450, 180–189 (2019)ADS Chou, Y.F.C.: Plasmonic effects in the enclosed and opened metallodielectric bowtie nanostructures. Opt. Commum. 450, 180–189 (2019)ADS
go back to reference Chou, Y.F.C., Lim, C.M., Chiang, C.Y., Voo, N.Y., Idris, M.N.S.M., Chai, S.U.: Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J. Nanopart. Res. 18, 88 (2016)ADS Chou, Y.F.C., Lim, C.M., Chiang, C.Y., Voo, N.Y., Idris, M.N.S.M., Chai, S.U.: Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J. Nanopart. Res. 18, 88 (2016)ADS
go back to reference Ding, F., Cui, Y., Ge, X., Jin, Y., He, S.: Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)ADS Ding, F., Cui, Y., Ge, X., Jin, Y., He, S.: Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)ADS
go back to reference Gadalla, M.N., Abdel-Rahman, M., Shamim, A.: Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci Rep 4, 4270 (2014)ADS Gadalla, M.N., Abdel-Rahman, M., Shamim, A.: Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci Rep 4, 4270  (2014)ADS
go back to reference Gao, H., Zhou, D., Cui, W., Liu, Z., Liu, Y., Jing, Z., Peng, W.: Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands. J. Opt. Soc. Am. A 36, 264–269 (2019)ADS Gao, H., Zhou, D., Cui, W., Liu, Z., Liu, Y., Jing, Z., Peng, W.: Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands. J. Opt. Soc. Am. A 36, 264–269 (2019)ADS
go back to reference Guo, H., Liu, N., Fu, L., Meyrath, T.P., Zentgraf, T., Schweizer, H., Giessen, H.: Resonance hybridization in double split-ring resonator metamaterials. Opt. Express 15, 12095–12101 (2007)ADS Guo, H., Liu, N., Fu, L., Meyrath, T.P., Zentgraf, T., Schweizer, H., Giessen, H.: Resonance hybridization in double split-ring resonator metamaterials. Opt. Express 15, 12095–12101 (2007)ADS
go back to reference He, J., Ding, P., Wang, J., Fan, C., Liang, E.: Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 3, 6083–6091 (2015)ADS He, J., Ding, P., Wang, J., Fan, C., Liang, E.: Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 3, 6083–6091 (2015)ADS
go back to reference Hsieh, et al.: Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commum. 370, 85–90 (2016)ADS Hsieh, et al.: Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commum. 370, 85–90 (2016)ADS
go back to reference Huang, Z., Chen, J., Liu, Y., Tang, L., Liu, G., Liu, X., Liu, Z.: Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces. J Phys D Appl Phys 50, 335106 (2017) Huang, Z., Chen, J., Liu, Y., Tang, L., Liu, G., Liu, X., Liu, Z.: Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces. J Phys D Appl Phys 50, 335106 (2017)
go back to reference Hussain, F.F.K., Heikal, A.M., Hameed, M.F.O., El-Azab, J., Abdelaziz, W.S., Obayya, S.S.A.: Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quantum Electron. 50, 474–482 (2014) Hussain, F.F.K., Heikal, A.M., Hameed, M.F.O., El-Azab, J., Abdelaziz, W.S., Obayya, S.S.A.: Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quantum Electron. 50, 474–482 (2014)
go back to reference James, T.D., Mulvaney, P., Roberts, A.: The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett. 16, 3817–3823 (2016)ADS James, T.D., Mulvaney, P., Roberts, A.: The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett. 16, 3817–3823 (2016)ADS
go back to reference Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)ADS Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)ADS
go back to reference Kraus, J.D., Marhefka, R.J.: Antennas for all applications. McGraw-Hill, New York (2002) Kraus, J.D., Marhefka, R.J.: Antennas for all applications. McGraw-Hill, New York (2002)
go back to reference Kumar N (2013) Spontaneous emission rate enhancement using optical antennas, Ph.D. Thesis, University of California, Berkeley, USA Kumar N (2013) Spontaneous emission rate enhancement using optical antennas, Ph.D. Thesis, University of California, Berkeley, USA
go back to reference Lahiri, B., McMeekin, S.G., De La Rue, R.M., Johnson, N.P.: Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators. Appl. Phys. Lett. 98, 153116 (2011)ADS Lahiri, B., McMeekin, S.G., De La Rue, R.M., Johnson, N.P.: Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators. Appl. Phys. Lett. 98, 153116 (2011)ADS
go back to reference Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADS Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADS
go back to reference Li, Z., Butun, S., Aydin, K.: Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8, 8242–8248 (2014) Li, Z., Butun, S., Aydin, K.: Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8, 8242–8248 (2014)
go back to reference Li, Y., Liu, Z., Zhang, H., Tang, P., Wu, B., Liu, G.: Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 27, 1809–11818 (2019) Li, Y., Liu, Z., Zhang, H., Tang, P., Wu, B., Liu, G.: Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 27, 1809–11818 (2019)
go back to reference Li, Y., Su, L., Shou, C., Yu, C., Deng, J., Fang, Y.: Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared. Sci. Rep. 3, 2865 (2013)ADS Li, Y., Su, L., Shou, C., Yu, C., Deng, J., Fang, Y.: Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared. Sci. Rep. 3, 2865 (2013)ADS
go back to reference Liu, X., et al.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)ADS Liu, X., et al.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)ADS
go back to reference Liu, G., Chen, J., Pang, P., Liu, Z.: Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber. IEEE J. Sel. Top. Quantum Electron. 25, 8520810 (2019a) Liu, G., Chen, J., Pang, P., Liu, Z.: Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber. IEEE J. Sel. Top. Quantum Electron. 25, 8520810 (2019a)
go back to reference Liu, X., Fu, G., Liu, M., Liu, G., Liu, Z.: High-quality plasmon sensing with excellent intensity contrast by dual narrow-band light perfect absorbs. Plasmonics 12, 65–68 (2017) Liu, X., Fu, G., Liu, M., Liu, G., Liu, Z.: High-quality plasmon sensing with excellent intensity contrast by dual narrow-band light perfect absorbs. Plasmonics 12, 65–68 (2017)
go back to reference Liu, Z., Fu, G., Yang, Y.X., Pan, P., Huang, Z., Chen, J.: A facile strategy for all-optical controlling platform by using plasmonic perfect absorbers. Plasmonics 13, 797–801 (2018) Liu, Z., Fu, G., Yang, Y.X., Pan, P., Huang, Z., Chen, J.: A facile strategy for all-optical controlling platform by using plasmonic perfect absorbers. Plasmonics 13, 797–801 (2018)
go back to reference Liu, G., Liu, X., Chen, J., Li, Y., Shi, L., Fu, G., Liu, Z.: Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol. Energy Mater. Sol. Cells 190, 20–29 (2019c) Liu, G., Liu, X., Chen, J., Li, Y., Shi, L., Fu, G., Liu, Z.: Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol. Energy Mater. Sol. Cells 190, 20–29 (2019c)
go back to reference Liu, Z., Liu, G., Fu, G., Liu, X., Huang, Z., Gu, G.: All-metal meta-surfaces for narrowband light absorption and high performance sensing. J. Phys. D Appl. Phys. 49, 445104 (2016b) Liu, Z., Liu, G., Fu, G., Liu, X., Huang, Z., Gu, G.: All-metal meta-surfaces for narrowband light absorption and high performance sensing. J. Phys. D Appl. Phys. 49, 445104 (2016b)
go back to reference Liu, Z., Liu, G., Fu, G., Liu, X., Wang, Y.: Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Opt. Express 24(5), 5020–5025 (2016a)ADS Liu, Z., Liu, G., Fu, G., Liu, X., Wang, Y.: Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Opt. Express 24(5), 5020–5025 (2016a)ADS
go back to reference Liu, Z., Liu, G., Liu, X., Huang, S., Wang, Y., Pan, P., Liu, M.: Achieving an ultra-narrow mutiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26, 235702 (2015a)ADS Liu, Z., Liu, G., Liu, X., Huang, S., Wang, Y., Pan, P., Liu, M.: Achieving an ultra-narrow mutiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26, 235702 (2015a)ADS
go back to reference Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic Sensor. Nano Lett. 10, 2342–2348 (2010)ADS Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic Sensor. Nano Lett. 10, 2342–2348 (2010)ADS
go back to reference Liu, Z., Tang, P., Liu, X., Yi, Z., Liu, G., Wang, Y., Liu, M.: Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology 30, 305203 (2019b)ADS Liu, Z., Tang, P., Liu, X., Yi, Z., Liu, G., Wang, Y., Liu, M.: Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology 30, 305203 (2019b)ADS
go back to reference Liu, Z., Yu, M., Huang, S., Liu, X., Wang, Y., Liu, M., Pana, P., Liu, G.: Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J. Mater. Chem. C. 3, 4222–4226 (2015b) Liu, Z., Yu, M., Huang, S., Liu, X., Wang, Y., Liu, M., Pana, P., Liu, G.: Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J. Mater. Chem. C. 3, 4222–4226 (2015b)
go back to reference Luo, X., Tsai, D.P., Gu, M., Hong, M.: Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. 48, 2458–2494 (2019) Luo, X., Tsai, D.P., Gu, M., Hong, M.: Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. 48, 2458–2494 (2019)
go back to reference Maier, S.A., Kik, P.G., Atwater, H.A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716 (2002)ADS Maier, S.A., Kik, P.G., Atwater, H.A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716  (2002)ADS
go back to reference Malhat, H.A., Eltresy, N.A., Zainud-Deen, S.H., Wadalba, K.H.: Nano-dielectricresonator antenna reflectarray/transmittarray for terahertz applications. Adv. Electromag. 4(1), 36–44 (2015)ADS Malhat, H.A., Eltresy, N.A., Zainud-Deen, S.H., Wadalba, K.H.: Nano-dielectricresonator antenna reflectarray/transmittarray for terahertz applications. Adv. Electromag. 4(1), 36–44 (2015)ADS
go back to reference Miyata, M., Hatada, H., Takahara, J.: Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166–3172 (2016)ADS Miyata, M., Hatada, H., Takahara, J.: Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166–3172 (2016)ADS
go back to reference Nau, D., Seidel, A., Orzekowsky, R.B., Lee, S.H., Deb, S., Giessen, H.: Hydrogen sensor based on metallic photonic crystal slabs. Opt. Lett. 35, 3150–3152 (2010)ADS Nau, D., Seidel, A., Orzekowsky, R.B., Lee, S.H., Deb, S., Giessen, H.: Hydrogen sensor based on metallic photonic crystal slabs. Opt. Lett. 35, 3150–3152 (2010)ADS
go back to reference Nihal FMFO (2017) Hameed Mohamed Hussein optical nano-antennas for energy harvesting (2017) Engineering and Green Technologies (AEEGT) Book Series Nihal FMFO (2017) Hameed Mohamed Hussein optical nano-antennas for energy harvesting (2017) Engineering and Green Technologies (AEEGT) Book Series
go back to reference Ogawa, S., Fujisawa, D., Hata, H., Uetsuki, M., Misaki, K., Kimata, M.: Mushroom plasmonic metamaterial infrared absorbers. Appl. Phys. Lett. 106, 41105 (2015) Ogawa, S., Fujisawa, D., Hata, H., Uetsuki, M., Misaki, K., Kimata, M.: Mushroom plasmonic metamaterial infrared absorbers. Appl. Phys. Lett. 106, 41105 (2015)
go back to reference Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)ADS Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)ADS
go back to reference Rhee, J.Y., Yoo, Y.J., Kim, K.W., Kim, Y.J., Lee, Y.P.: Metamaterial-based perfect absorbers. J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014) Rhee, J.Y., Yoo, Y.J., Kim, K.W., Kim, Y.J., Lee, Y.P.: Metamaterial-based perfect absorbers. J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014)
go back to reference Shinpei, O., Masafumi, K.: Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review. Materials 11, 458 (2018) Shinpei, O., Masafumi, K.: Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review. Materials 11, 458 (2018)
go back to reference Song, M., et al.: Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)ADS Song, M., et al.: Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)ADS
go back to reference Tan, S.J., Zhang, L., Zhu, D., et al.: Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014)ADS Tan, S.J., Zhang, L., Zhu, D., et al.: Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014)ADS
go back to reference Vajtai, R.: Hand book of nanomaterials. Springer Handbooks, New York (2013) Vajtai, R.: Hand book of nanomaterials. Springer Handbooks, New York (2013)
go back to reference Willets, K.A., Duyne, R.P.V.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)ADS Willets, K.A., Duyne, R.P.V.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)ADS
go back to reference Wu, C., Khanikaev, A.B., Adato, R., et al.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2011)ADS Wu, C., Khanikaev, A.B., Adato, R., et al.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2011)ADS
go back to reference Wu, D., Liu, Y., Li, R., Chen, L., Ma, R., Liu, C., Han, Y.H.: Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res. Lett. 11, 483 (2016)ADS Wu, D., Liu, Y., Li, R., Chen, L., Ma, R., Liu, C., Han, Y.H.: Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res. Lett. 11, 483 (2016)ADS
go back to reference Xu, J., Zhao, Z., Yu, H., Yang, L., Gou, P., Cao, J., Zou, Y., Qian, J., Shi, T., Ren, Q., An, Z.: Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express 24, 25742–25751 (2016)ADS Xu, J., Zhao, Z., Yu, H., Yang, L., Gou, P., Cao, J., Zou, Y., Qian, J., Shi, T., Ren, Q., An, Z.: Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express 24, 25742–25751 (2016)ADS
go back to reference Yang, W., Chau, Y.F.C., Jheng, S.C.: Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys. Plasmas 20, 064503 (2013)ADS Yang, W., Chau, Y.F.C., Jheng, S.C.: Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys. Plasmas 20, 064503 (2013)ADS
go back to reference Yanik, A.A., Huang, M., Artar, A., Chang, T.Y., Altug, H.: Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl. Phys. Lett. 96, 021101 (2010)ADS Yanik, A.A., Huang, M., Artar, A., Chang, T.Y., Altug, H.: Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl. Phys. Lett. 96, 021101 (2010)ADS
go back to reference Ye, J., Shioi, M., Lodewijks, K., Lagae, L., Kawamura, T., Dorpe, P.V.: Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl. Phys. Lett. 97, 163106 (2010)ADS Ye, J., Shioi, M., Lodewijks, K., Lagae, L., Kawamura, T., Dorpe, P.V.: Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl. Phys. Lett. 97, 163106 (2010)ADS
go back to reference Yong, Z., Zhang, S., Gong, C., He, S.: Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 6, 24063 (2016)ADS Yong, Z., Zhang, S., Gong, C., He, S.: Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 6, 24063 (2016)ADS
go back to reference Zhu, H., Yi, F., Cubukcu, E.: Nanoantenna absorbers for thermal detectors. IEEE Photon. Technol. Lett. 24(14), 1194–1196 (2012)ADS Zhu, H., Yi, F., Cubukcu, E.: Nanoantenna absorbers for thermal detectors. IEEE Photon. Technol. Lett. 24(14), 1194–1196 (2012)ADS
Metadata
Title
New compact of absorber thermal surface
Authors
A. Nagy Asl
Bedir Yousif
Mahmoud Alzalabani
Publication date
01-08-2020
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 8/2020
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-020-02483-6

Other articles of this Issue 8/2020

Optical and Quantum Electronics 8/2020 Go to the issue