Skip to main content
Top
Published in: Acta Mechanica 2/2024

10-12-2023 | Original Paper

Noether theorem and its inverse for nonstandard generalized Chaplygin systems

Authors: S. X. Jin, Y. M. Li, X. W. Chen

Published in: Acta Mechanica | Issue 2/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the Noether theorems and their inverse theorems for generalized Chaplygin systems with two types of nonstandard Lagrangians, related to exponential and power-law Lagrangian, are explored and presented. The variational principles for the Chaplygin systems with nonstandard Lagrangian are derived, and the generalized Chaplygin equations for the corresponding systems are established, the Noether transformations are considered, from which the corresponding conserved quantities are deduced. And their inverse theorems for nonstandard generalized Chaplygin systems are given. Two examples show the validity of the results.
Literature
1.
go back to reference Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gott. Math. Phys. 2, 235–237 (1918) Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gott. Math. Phys. 2, 235–237 (1918)
2.
go back to reference Djukić, D.S., Vujanović, B.D.: Noether theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)ADSMathSciNet Djukić, D.S., Vujanović, B.D.: Noether theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)ADSMathSciNet
3.
go back to reference Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999). (in Chinese) Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999). (in Chinese)
4.
go back to reference Li, Z.P.: The transformation properties of constrained system. Acta Phys. Sin. 20(12), 1659–1671 (1981). (in Chinese)MathSciNet Li, Z.P.: The transformation properties of constrained system. Acta Phys. Sin. 20(12), 1659–1671 (1981). (in Chinese)MathSciNet
5.
go back to reference Liu, D.: Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems. Sci. China Ser. A 34(4), 419–429 (1991)ADSMathSciNet Liu, D.: Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems. Sci. China Ser. A 34(4), 419–429 (1991)ADSMathSciNet
6.
go back to reference Borisov, A.V., Mamaev, I.S.: Symmetries and reduction in nonholonomic mechanics. Regul. Chaotic Dyn. 20(5), 553–604 (2015)ADSMathSciNet Borisov, A.V., Mamaev, I.S.: Symmetries and reduction in nonholonomic mechanics. Regul. Chaotic Dyn. 20(5), 553–604 (2015)ADSMathSciNet
7.
go back to reference Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)MathSciNet Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)MathSciNet
8.
go back to reference Atanacković, T.M., Konjik, S., et al.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)MathSciNet Atanacković, T.M., Konjik, S., et al.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)MathSciNet
9.
go back to reference Zhou, S., Fu, H., Fu, J.L.: Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. Chin. Phys. Mech. Astron. 54(10), 1847–1853 (2011)ADS Zhou, S., Fu, H., Fu, J.L.: Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. Chin. Phys. Mech. Astron. 54(10), 1847–1853 (2011)ADS
10.
go back to reference Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81, 469–480 (2015)MathSciNet Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81, 469–480 (2015)MathSciNet
11.
go back to reference Tian, X., Zhang, Y.: Fractional time-scales Noether theorem with Caputo derivatives for Hamiltonian systems. Appl. Math. Comput. 393, 125753 (2021)MathSciNet Tian, X., Zhang, Y.: Fractional time-scales Noether theorem with Caputo derivatives for Hamiltonian systems. Appl. Math. Comput. 393, 125753 (2021)MathSciNet
12.
go back to reference Frederico, G.S.F., Torres, D.F.M.: Noether’s symmetry theorem for variational and optimal control problems with time delay. Numer. Algebra Control Optim. 2(3), 619–630 (2012)MathSciNet Frederico, G.S.F., Torres, D.F.M.: Noether’s symmetry theorem for variational and optimal control problems with time delay. Numer. Algebra Control Optim. 2(3), 619–630 (2012)MathSciNet
13.
go back to reference Zhai, X.H., Zhang, Y.: Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn. 77, 73–86 (2014)MathSciNet Zhai, X.H., Zhang, Y.: Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn. 77, 73–86 (2014)MathSciNet
14.
go back to reference Zhang, Y., Jin, S.X.: Noether symmetries of dynamics for non-conservative systems with time delay. Acta Phys. Sin. 62(23), 214502 (2013). (in Chinese) Zhang, Y., Jin, S.X.: Noether symmetries of dynamics for non-conservative systems with time delay. Acta Phys. Sin. 62(23), 214502 (2013). (in Chinese)
15.
go back to reference Jin, S.X., Zhang, Y.: Noether symmetries for nonconservative Lagrange systems with time delay based on fractional model. Nonlinear Dyn. 79(2), 1169–1183 (2015) Jin, S.X., Zhang, Y.: Noether symmetries for nonconservative Lagrange systems with time delay based on fractional model. Nonlinear Dyn. 79(2), 1169–1183 (2015)
16.
go back to reference Santos, S.P.S., Martins, N., Torres, D.F.M.: An optimal control approach to Herglotz variational problems. In: Plakhov, A., Tchemisova, T., Freitas, A. (eds.) Optimization in the Natural Sciences. Communications in Computer and Information Science, vol. 499. Springer, Cham (2015) Santos, S.P.S., Martins, N., Torres, D.F.M.: An optimal control approach to Herglotz variational problems. In: Plakhov, A., Tchemisova, T., Freitas, A. (eds.) Optimization in the Natural Sciences. Communications in Computer and Information Science, vol. 499. Springer, Cham (2015)
17.
go back to reference Zhang, Y.: Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem. Symmetry 12, 845 (2020)ADS Zhang, Y.: Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem. Symmetry 12, 845 (2020)ADS
18.
go back to reference Bartosiewicz, Z., Torres, D.F.M.: Noether’s theorem on time scales. J. Math. Anal. Appl. 342, 1220–1226 (2008)MathSciNet Bartosiewicz, Z., Torres, D.F.M.: Noether’s theorem on time scales. J. Math. Anal. Appl. 342, 1220–1226 (2008)MathSciNet
19.
go back to reference Anerot, B., Cresson, J., et al.: Noether’s-type theorems on time scales. J. Math. Phys. 61, 113502 (2020)ADSMathSciNet Anerot, B., Cresson, J., et al.: Noether’s-type theorems on time scales. J. Math. Phys. 61, 113502 (2020)ADSMathSciNet
20.
go back to reference Jin, S.X., Zhang, Y.: Noether theorem for generalized Chaplygin system on time scales. Ind J. Phys. 93(7), 883–890 (2019) Jin, S.X., Zhang, Y.: Noether theorem for generalized Chaplygin system on time scales. Ind J. Phys. 93(7), 883–890 (2019)
21.
go back to reference Zhang, Y.: Lie symmetry and invariants for a generalized birkhoffian system on time scales. Chaos Soliton Fract 128, 306–312 (2019)ADSMathSciNet Zhang, Y.: Lie symmetry and invariants for a generalized birkhoffian system on time scales. Chaos Soliton Fract 128, 306–312 (2019)ADSMathSciNet
22.
go back to reference Zhang, Y.: Mei’s symmetry theorem for time scales nonshifted mechanical systems. Theor. Appl. Mech. Let. 11(5), 100286 (2021) Zhang, Y.: Mei’s symmetry theorem for time scales nonshifted mechanical systems. Theor. Appl. Mech. Let. 11(5), 100286 (2021)
23.
go back to reference Naz, R., Naeem, I.: The approximate Noether symmetries and approximate first integrals for the approximate Hamiltonian systems. Nonlinear Dyn. 96(3), 2225–2239 (2019) Naz, R., Naeem, I.: The approximate Noether symmetries and approximate first integrals for the approximate Hamiltonian systems. Nonlinear Dyn. 96(3), 2225–2239 (2019)
24.
go back to reference Jin, S.X., Zhang, Y.: The approximate Noether symmetries and conservation laws for approximate Birkhoffian systems. Nonlinear Dyn. 111(4), 13235–13243 (2023) Jin, S.X., Zhang, Y.: The approximate Noether symmetries and conservation laws for approximate Birkhoffian systems. Nonlinear Dyn. 111(4), 13235–13243 (2023)
25.
go back to reference Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)
26.
go back to reference Cariñena, J.F., Rañada, M.F., Santander, M.: Lagrangian formalism for nonlinear second- order Riccati systems: one dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)ADSMathSciNet Cariñena, J.F., Rañada, M.F., Santander, M.: Lagrangian formalism for nonlinear second- order Riccati systems: one dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)ADSMathSciNet
27.
go back to reference Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. J. Math. Phys. 48, 032701 (2007)ADSMathSciNet Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. J. Math. Phys. 48, 032701 (2007)ADSMathSciNet
28.
go back to reference Udwadia, F.E., Cho, H.: First integral and solutions of duffing–van der pol type equations. J. Appl. Mech. 81(3), 034501 (2014) Udwadia, F.E., Cho, H.: First integral and solutions of duffing–van der pol type equations. J. Appl. Mech. 81(3), 034501 (2014)
29.
go back to reference Alekseev, A.I., Arbuzov, B.A.: Classical Yang–Mills field theory with nonstandard Lagrangian. Theor. Math. Phys. 59(1), 372–378 (1984) Alekseev, A.I., Arbuzov, B.A.: Classical Yang–Mills field theory with nonstandard Lagrangian. Theor. Math. Phys. 59(1), 372–378 (1984)
30.
go back to reference Saha, A., Talukdar, B.: Inverse variational problem for nonstandard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)ADSMathSciNet Saha, A., Talukdar, B.: Inverse variational problem for nonstandard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)ADSMathSciNet
31.
go back to reference Taverna, G.S., Torres, D.F.M.: Generalized fractional operators for nonstandard Lagrangians. Math. Methods Appl. Sci. 38(9), 1808–1812 (2015)ADSMathSciNet Taverna, G.S., Torres, D.F.M.: Generalized fractional operators for nonstandard Lagrangians. Math. Methods Appl. Sci. 38(9), 1808–1812 (2015)ADSMathSciNet
32.
go back to reference El-Nabulsi, A.R.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79(3), 2055–2068 (2015)MathSciNet El-Nabulsi, A.R.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79(3), 2055–2068 (2015)MathSciNet
33.
go back to reference Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangian. Nonlinear Dyn. 84(4), 1867–1876 (2016)MathSciNet Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangian. Nonlinear Dyn. 84(4), 1867–1876 (2016)MathSciNet
34.
go back to reference Song, J., Zhang, Y.: Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales. Chin. Phys. B 26(8), 084501 (2017)ADS Song, J., Zhang, Y.: Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales. Chin. Phys. B 26(8), 084501 (2017)ADS
35.
go back to reference Ding, J.J., Zhang, Y.: Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos Solition Fract. 138, 109913 (2020)MathSciNet Ding, J.J., Zhang, Y.: Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos Solition Fract. 138, 109913 (2020)MathSciNet
36.
go back to reference Jin, S.X., Li, Y.M., Zhang, Y.: Noether symmetry and its inverse for dynamical systems with two kinds of nonstandard Lagrangians via quasi-coordinates. Indian J. Phys. 96, 2437–3448 (2021)ADS Jin, S.X., Li, Y.M., Zhang, Y.: Noether symmetry and its inverse for dynamical systems with two kinds of nonstandard Lagrangians via quasi-coordinates. Indian J. Phys. 96, 2437–3448 (2021)ADS
37.
go back to reference Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Non-Linear Mech. 105, 165–172 (2018)ADS Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Non-Linear Mech. 105, 165–172 (2018)ADS
38.
go back to reference Zhang, L.J., Zhang, Y.: Non-standard Birkhoffian dynamics and its Noether’s theorems. Commun. Nonlinear Sci. Numer. Simulat. 91, 105435 (2020)MathSciNet Zhang, L.J., Zhang, Y.: Non-standard Birkhoffian dynamics and its Noether’s theorems. Commun. Nonlinear Sci. Numer. Simulat. 91, 105435 (2020)MathSciNet
39.
go back to reference Zhang, Y., Jia, Y.D.: Generalization of Mei symmetry approach to fractional Birkhoffian mechanics. Chaos Soliton Fract. 166, 112971 (2023)MathSciNet Zhang, Y., Jia, Y.D.: Generalization of Mei symmetry approach to fractional Birkhoffian mechanics. Chaos Soliton Fract. 166, 112971 (2023)MathSciNet
40.
go back to reference Zhou, X.S., Zhang, Y.: Routh Method of Reduction for Dynamic Systems with Non-Standard Lagrangians. Chin. Quart. Mech. 37(1), 15–21 (2016). (in Chinese) Zhou, X.S., Zhang, Y.: Routh Method of Reduction for Dynamic Systems with Non-Standard Lagrangians. Chin. Quart. Mech. 37(1), 15–21 (2016). (in Chinese)
41.
go back to reference Song, J., Zhang, Y.: Routh method of reduction for dynamical systems with nonstandard Lagrangians on time scales. Ind. J. Phys. 94(4), 1–6 (2019) Song, J., Zhang, Y.: Routh method of reduction for dynamical systems with nonstandard Lagrangians on time scales. Ind. J. Phys. 94(4), 1–6 (2019)
42.
go back to reference El-Nabulsi, A.R.: Nonlinear dynamics with nonstandard Lagrangians. Qual. Theory Dyn. Syst. 12(2), 273–291 (2012) El-Nabulsi, A.R.: Nonlinear dynamics with nonstandard Lagrangians. Qual. Theory Dyn. Syst. 12(2), 273–291 (2012)
43.
go back to reference Mei, F.X.: Analytical Mechanics. Beijing Institute of Technology Press, Beijing (2013) Mei, F.X.: Analytical Mechanics. Beijing Institute of Technology Press, Beijing (2013)
Metadata
Title
Noether theorem and its inverse for nonstandard generalized Chaplygin systems
Authors
S. X. Jin
Y. M. Li
X. W. Chen
Publication date
10-12-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 2/2024
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03812-y

Other articles of this Issue 2/2024

Acta Mechanica 2/2024 Go to the issue

Premium Partners