Skip to main content
Top
Published in: Polymer Bulletin 1/2016

11-08-2015 | Original Paper

Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites

Authors: Ravibabu Valapa, Sameer Hussain, Parmeswar Krishnan Iyer, G. Pugazhenthi, Vimal Katiyar

Published in: Polymer Bulletin | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Poly(lactic acid) (PLA) bionanocomposites containing sucrose palmitate (SP), which is a non-toxic food additive, were prepared by a simple solution-casting approach. In the current work, the investigation of non-isothermal cold crystallization kinetics of PLA and PLA–SP bionanocomposites was performed using a differential scanning calorimeter under the dynamic heating regime of 2.5, 5, 7.5 and 10 °C/min. Avrami model was employed to study the effect of SP on cold crystallization kinetics of PLA. For PLA–SP bionanocomposites, Avrami coefficients obtained in the range of ~2.5–4 and decreasing trend of the t 1/2 values indicated the faster crystallization mechanism in comparison to neat PLA. The nucleation and growth mechanism involved in the non-isothermal crystallization of PLA and PLA–SP bionanocomposites were further analyzed by Tobin model. Kissinger method has been employed to determine the crystallization activation energy (ΔE) for neat PLA and PLA–SP bionanocomposite. The nucleation as well as the growth of spherulites in neat PLA and PLA–SP bionanocomposites was observed using polarized optical microscopy. After incorporation of SP in the PLA matrix, an increase in the overall crystallization rate for PLA was reflected by the decline in the nucleation induction period and subsequent enhancement in the primary nucleation sites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 36:576–602CrossRef Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 36:576–602CrossRef
2.
go back to reference Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future—a technical and an environmental review. Chem Rev 112:2082–2099CrossRef Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future—a technical and an environmental review. Chem Rev 112:2082–2099CrossRef
3.
go back to reference Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101CrossRef Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101CrossRef
4.
go back to reference Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846CrossRef Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846CrossRef
5.
go back to reference Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796CrossRef Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796CrossRef
6.
go back to reference Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef
7.
go back to reference Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef
8.
go back to reference Bhardwaj R, Mohanty A (2007) Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8:2476–2484CrossRef Bhardwaj R, Mohanty A (2007) Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8:2476–2484CrossRef
9.
go back to reference Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411CrossRef Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411CrossRef
10.
go back to reference Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l-lactide) nucleated using layered metal phosphonates. Polym Int 60:284–297CrossRef Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l-lactide) nucleated using layered metal phosphonates. Polym Int 60:284–297CrossRef
11.
go back to reference Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). J Phys Chem B 112:16461–16468CrossRef Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). J Phys Chem B 112:16461–16468CrossRef
12.
go back to reference Yu J, Qiu Z (2011) Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(l-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 50:12579–12586CrossRef Yu J, Qiu Z (2011) Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(l-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 50:12579–12586CrossRef
13.
go back to reference Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modelling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 42:3171–3182CrossRef Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modelling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 42:3171–3182CrossRef
14.
go back to reference Liu Y, Wang L, He Y, Fan Z, Lia S (2010) Non-isothermal crystallization kinetics of poly(l-lactide). Polym Int 59:1616–1621CrossRef Liu Y, Wang L, He Y, Fan Z, Lia S (2010) Non-isothermal crystallization kinetics of poly(l-lactide). Polym Int 59:1616–1621CrossRef
15.
go back to reference Park SH, Lee SG, Kim SH (2013) Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos A 46:11–18CrossRef Park SH, Lee SG, Kim SH (2013) Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos A 46:11–18CrossRef
16.
go back to reference Laredoa E, Grimaub M, Belloa A, Wuc D (2013) Molecular dynamics and crystallization precursors in polylactide and poly(lactide)/CNT biocomposites in the insulating state. Eur Polym J 49:4008–4019CrossRef Laredoa E, Grimaub M, Belloa A, Wuc D (2013) Molecular dynamics and crystallization precursors in polylactide and poly(lactide)/CNT biocomposites in the insulating state. Eur Polym J 49:4008–4019CrossRef
17.
go back to reference Wu JH, Yen MS, Kuo MC, Chen BH (2013) Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Mater Chem Phys 142:726–733CrossRef Wu JH, Yen MS, Kuo MC, Chen BH (2013) Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Mater Chem Phys 142:726–733CrossRef
18.
go back to reference Qian Y, Wei P, Jiang P, Li Z, Yan Y, Ji K (2013) Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Compos Sci Technol 82:1–7CrossRef Qian Y, Wei P, Jiang P, Li Z, Yan Y, Ji K (2013) Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Compos Sci Technol 82:1–7CrossRef
19.
go back to reference Gerds N, Katiyar V, Koch CB, Risbo J, Plackett D, Hansen HCB (2012) Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation. Appl Clay Sci 65:143–151CrossRef Gerds N, Katiyar V, Koch CB, Risbo J, Plackett D, Hansen HCB (2012) Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation. Appl Clay Sci 65:143–151CrossRef
20.
go back to reference Ashabi L, Jafari SH, Khonakdar HA, Haussler L, Wagenknecht U, Heinrich G (2013) Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay. Thermochim Acta 565:102–113CrossRef Ashabi L, Jafari SH, Khonakdar HA, Haussler L, Wagenknecht U, Heinrich G (2013) Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay. Thermochim Acta 565:102–113CrossRef
21.
go back to reference Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036CrossRef Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036CrossRef
22.
go back to reference Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef
23.
go back to reference Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef
24.
go back to reference Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef
25.
go back to reference Valapa R, Pugazhenthi G, Katiyar V (2015) Fabrication and characterization of sucrose palmitate reinforced poly(lactic acid) bionanocomposite films. J Appl Polym Sci 132:41320–41330CrossRef Valapa R, Pugazhenthi G, Katiyar V (2015) Fabrication and characterization of sucrose palmitate reinforced poly(lactic acid) bionanocomposite films. J Appl Polym Sci 132:41320–41330CrossRef
26.
go back to reference Valapa R, Pugazhenthi G, Katiyar V (2014) Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites. Int J Biol Macromol 65:275–283CrossRef Valapa R, Pugazhenthi G, Katiyar V (2014) Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites. Int J Biol Macromol 65:275–283CrossRef
27.
go back to reference Huda MS, Drzal LY, Misra M (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44:5593–5601CrossRef Huda MS, Drzal LY, Misra M (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44:5593–5601CrossRef
28.
go back to reference Peng F, Shaw MT, Olson JR, Wei M (2011) Hydroxyapatite needle-shaped particles/poly(l-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties. J Phys Chem C 115:15743–15751CrossRef Peng F, Shaw MT, Olson JR, Wei M (2011) Hydroxyapatite needle-shaped particles/poly(l-lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties. J Phys Chem C 115:15743–15751CrossRef
29.
go back to reference Liu L, Jin TZ, Coffin DR, Hicks KB (2009) Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. J Agric Food Chem 57:8392–8398CrossRef Liu L, Jin TZ, Coffin DR, Hicks KB (2009) Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. J Agric Food Chem 57:8392–8398CrossRef
30.
go back to reference Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad Stab 95:2563–2573CrossRef Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad Stab 95:2563–2573CrossRef
31.
go back to reference Sawai D, Takahashi K, Sasashige A, Kanamoto T, Hyon SH (2003) Preparation of oriented β-form poly(l-lactic acid) by solid-state co-extrusion: effect of extrusion variables. Macromolecules 36:3601–3605CrossRef Sawai D, Takahashi K, Sasashige A, Kanamoto T, Hyon SH (2003) Preparation of oriented β-form poly(l-lactic acid) by solid-state co-extrusion: effect of extrusion variables. Macromolecules 36:3601–3605CrossRef
32.
go back to reference Hoogsteen W, Postema AR, Pennings AJ, Brinke GT (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRef Hoogsteen W, Postema AR, Pennings AJ, Brinke GT (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRef
33.
go back to reference Bharadwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051CrossRef Bharadwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051CrossRef
34.
go back to reference Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem 59:12384–12395CrossRef Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem 59:12384–12395CrossRef
35.
go back to reference Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer. Polym Bull 70:2569–2586CrossRef Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer. Polym Bull 70:2569–2586CrossRef
36.
go back to reference Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRef Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRef
37.
go back to reference Kong Y, Hay JN (2003) Multiple melting behaviour of poly(ethylene terephthalate). Polymer 44:623–633CrossRef Kong Y, Hay JN (2003) Multiple melting behaviour of poly(ethylene terephthalate). Polymer 44:623–633CrossRef
38.
go back to reference Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655CrossRef Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655CrossRef
39.
go back to reference Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 7:2027–2036CrossRef Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 7:2027–2036CrossRef
40.
go back to reference Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50:13789–13798CrossRef Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50:13789–13798CrossRef
41.
go back to reference Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRef Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRef
42.
go back to reference Vasanthan N, Ly H, Ghosh S (2011) Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(l-lactic acid) nanocomposites. J Phys Chem B 115:9556–9563CrossRef Vasanthan N, Ly H, Ghosh S (2011) Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(l-lactic acid) nanocomposites. J Phys Chem B 115:9556–9563CrossRef
43.
go back to reference Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y (2012) Blends of linear and long-chain branched poly(l-lactide)s with high melt strength and fast crystallization rate. Ind Eng Chem Res 51:10088–10099CrossRef Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y (2012) Blends of linear and long-chain branched poly(l-lactide)s with high melt strength and fast crystallization rate. Ind Eng Chem Res 51:10088–10099CrossRef
44.
go back to reference Wu D, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef Wu D, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef
45.
go back to reference Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(l-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303CrossRef Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(l-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303CrossRef
46.
go back to reference Yi L, Han C (2012) Isothermal and nonisothermal cold crystallization behaviors of asymmetric poly(l-lactide)/poly(d-lactide) blends. Ind Eng Chem Res 51:15927–15935CrossRef Yi L, Han C (2012) Isothermal and nonisothermal cold crystallization behaviors of asymmetric poly(l-lactide)/poly(d-lactide) blends. Ind Eng Chem Res 51:15927–15935CrossRef
47.
go back to reference Zhang R, Zheng H, Lou X, Ma D (1994) Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci 51:51–56CrossRef Zhang R, Zheng H, Lou X, Ma D (1994) Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci 51:51–56CrossRef
48.
go back to reference Wu M, Yang G, Wang M, Wang W, Zhang W, Feng J, Liu T (2008) Nonisothermal crystallization kinetics of zno nanorod filled polyamide 11 composites. Mater Chem Phys 109:547–555CrossRef Wu M, Yang G, Wang M, Wang W, Zhang W, Feng J, Liu T (2008) Nonisothermal crystallization kinetics of zno nanorod filled polyamide 11 composites. Mater Chem Phys 109:547–555CrossRef
49.
go back to reference Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef
50.
go back to reference Bao RY, Yang W, Jiang WR, Liu ZY, Xie BH, Yang MB (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674CrossRef Bao RY, Yang W, Jiang WR, Liu ZY, Xie BH, Yang MB (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674CrossRef
51.
go back to reference Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef
52.
go back to reference Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C (2013) Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. doi:10.1177/0021998313502064 Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C (2013) Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. doi:10.​1177/​0021998313502064​
53.
go back to reference Maiti SN, Hemalatha (2012) Nonisothermal crystallization kinetics of PA6 and PA6/SEBS-g-MA Blends. J Polym Res 19:9926–9942 Maiti SN, Hemalatha (2012) Nonisothermal crystallization kinetics of PA6 and PA6/SEBS-g-MA Blends. J Polym Res 19:9926–9942
54.
go back to reference Li DC, Liu T, Zhao L, Lian XS, Yuan WK (2011) Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res 50:1997–2007CrossRef Li DC, Liu T, Zhao L, Lian XS, Yuan WK (2011) Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res 50:1997–2007CrossRef
55.
go back to reference Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon Nanotubes of Different Aspect Ratios. ACS Appl Mater Interfaces 3:3744–3753CrossRef Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon Nanotubes of Different Aspect Ratios. ACS Appl Mater Interfaces 3:3744–3753CrossRef
Metadata
Title
Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites
Authors
Ravibabu Valapa
Sameer Hussain
Parmeswar Krishnan Iyer
G. Pugazhenthi
Vimal Katiyar
Publication date
11-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 1/2016
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1468-3

Other articles of this Issue 1/2016

Polymer Bulletin 1/2016 Go to the issue

Premium Partners