Skip to main content
Erschienen in: Polymer Bulletin 9/2013

01.09.2013 | Original Paper

Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer

verfasst von: F. Ravari, A. Mashak, M. Nekoomanesh, H. Mobedi

Erschienen in: Polymer Bulletin | Ausgabe 9/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of l-lactide dimer as additives on the crystallization behavior of poly(l-lactide) (PLLA) films were studied. Hence, neat PLLA films and PLLA containing l-lactide (5 % w/w) (PLLA/La) were prepared in dichloromethane at room temperature via solution casting. The non-isothermal cold crystallization of PLLA films were studied using differential scanning calorimetry at various heating rates including 2.5, 5, 7.5, 10 and 15 °C/min. However, the X C% was increased for PLLA/La films in comparison with neat PLLA films. The crystallization kinetics was then analyzed by the Avrami, Jeziorny, Ozawa and Mo kinetic models. It is found that all the kinetic models were established to describe the experimental data fairly well except the Ozawa model. The values of t 1/2, Z C and F(T) indicated that the crystallization rate increased with increase in heating rates for PLLA and PLLA/La films. However, l-lactide dimer incorporated in PLLA films accelerates the crystallization process of PLLA at the high heating rate. The nucleation constant (K g) and the surface free energy (σ e) based on Lauritzen–Hoffman theory indicated that these parameters for PLLA/La films is lower than neat PLLA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu Y, Wang L, He Y, Fana Zh, Lia S (2010) Non-isothermal crystallization kinetics of poly(l-lactide). Polym Int 59:1616–1621CrossRef Liu Y, Wang L, He Y, Fana Zh, Lia S (2010) Non-isothermal crystallization kinetics of poly(l-lactide). Polym Int 59:1616–1621CrossRef
2.
Zurück zum Zitat Acar I, Durmus A, Ozgümüs S (2007) Non-isothermal crystallization kinetics and morphology of polyethylene terephthalate modified with polydactic acid. J Appl Polym Sci 106:4180–4191CrossRef Acar I, Durmus A, Ozgümüs S (2007) Non-isothermal crystallization kinetics and morphology of polyethylene terephthalate modified with polydactic acid. J Appl Polym Sci 106:4180–4191CrossRef
3.
Zurück zum Zitat Tsuji H, Miyauchi S (2001) Enzymatic hydrolysis of poly(Lactide)s: effects of molecular weight, l-Lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules 2:597–604CrossRef Tsuji H, Miyauchi S (2001) Enzymatic hydrolysis of poly(Lactide)s: effects of molecular weight, l-Lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules 2:597–604CrossRef
4.
Zurück zum Zitat Li SM, Tenon M, Garreau H, Braud C, Vert M (2000) Enzymatic degradation of stereocopolymers derived from l-dl- and meso-lactides. Polym Degrad Stabil 67:85–90CrossRef Li SM, Tenon M, Garreau H, Braud C, Vert M (2000) Enzymatic degradation of stereocopolymers derived from l-dl- and meso-lactides. Polym Degrad Stabil 67:85–90CrossRef
5.
Zurück zum Zitat Wang Y, Funari S, Mano J (2006) Influence of semicrystalline morphology on the glass transition of poly(l-lactic acid). Macromol Chem Phys 207:1262–1271CrossRef Wang Y, Funari S, Mano J (2006) Influence of semicrystalline morphology on the glass transition of poly(l-lactic acid). Macromol Chem Phys 207:1262–1271CrossRef
6.
Zurück zum Zitat Zhi-Hua Zh, Jian-Ming R, Zhong-Cheng Zh, Jian-Peng Z (2007) The kinetics of melting crystallization of poly-l-lactide. Polym Plast Tech Eng 46:863–871CrossRef Zhi-Hua Zh, Jian-Ming R, Zhong-Cheng Zh, Jian-Peng Z (2007) The kinetics of melting crystallization of poly-l-lactide. Polym Plast Tech Eng 46:863–871CrossRef
7.
Zurück zum Zitat Kolstad J (1996) Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci 62:1079–1091CrossRef Kolstad J (1996) Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci 62:1079–1091CrossRef
8.
Zurück zum Zitat Zhou WY, Duan B, Wang M, Cheung WL (2009) Crystallization kinetics of poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Appl Polym Sci 113:4100–4115CrossRef Zhou WY, Duan B, Wang M, Cheung WL (2009) Crystallization kinetics of poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Appl Polym Sci 113:4100–4115CrossRef
9.
Zurück zum Zitat Xu H-Sh, Dai XJ, Lamb PR, Li Zh-M (2009) Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352CrossRef Xu H-Sh, Dai XJ, Lamb PR, Li Zh-M (2009) Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352CrossRef
10.
Zurück zum Zitat Katiyar V, Nanavati H (2011) High molecular weight poly(l-lactic acid) clay nanocomposites via solid-state polymerization. Polym Compos 32:497–509CrossRef Katiyar V, Nanavati H (2011) High molecular weight poly(l-lactic acid) clay nanocomposites via solid-state polymerization. Polym Compos 32:497–509CrossRef
11.
Zurück zum Zitat Lu J, Qiu Z, Yang W (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48:4196–4204CrossRef Lu J, Qiu Z, Yang W (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48:4196–4204CrossRef
12.
Zurück zum Zitat Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef
13.
Zurück zum Zitat Ohtani Y, Okumura K, Kawaguchi A (2003) Crystallization behavior of amorphous poly(l-lactide). J Macromol Sci Phys 42:875–888CrossRef Ohtani Y, Okumura K, Kawaguchi A (2003) Crystallization behavior of amorphous poly(l-lactide). J Macromol Sci Phys 42:875–888CrossRef
14.
Zurück zum Zitat Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39:300–313CrossRef Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39:300–313CrossRef
15.
Zurück zum Zitat Baratian S, Hall ES, Lin JS, Xu R, Runt J (2001) Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-l-lactide)s. Macromolecules 34:4857–4864CrossRef Baratian S, Hall ES, Lin JS, Xu R, Runt J (2001) Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-l-lactide)s. Macromolecules 34:4857–4864CrossRef
16.
Zurück zum Zitat Wei JC, Sun JR, Wang HJ, Chen XS, Jing XB (2010) Isothermal crystallization behavior and unique banded spherulites of hydroxyapatite/poly(l-lactide) nanocomposites. Chin J Polym Sci (CJPS) 4:499–507CrossRef Wei JC, Sun JR, Wang HJ, Chen XS, Jing XB (2010) Isothermal crystallization behavior and unique banded spherulites of hydroxyapatite/poly(l-lactide) nanocomposites. Chin J Polym Sci (CJPS) 4:499–507CrossRef
17.
Zurück zum Zitat Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43:2819–2835CrossRef Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43:2819–2835CrossRef
18.
Zurück zum Zitat Cao D, Wu L (2009) Poly(l-lactic acid)/silicon dioxide nanocomposite prepared via the in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: isothermal crystallization and melting behaviors. J Appl Polym Sci 111:1045–1050CrossRef Cao D, Wu L (2009) Poly(l-lactic acid)/silicon dioxide nanocomposite prepared via the in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: isothermal crystallization and melting behaviors. J Appl Polym Sci 111:1045–1050CrossRef
19.
Zurück zum Zitat Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609CrossRef Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609CrossRef
20.
Zurück zum Zitat Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347CrossRef Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347CrossRef
21.
Zurück zum Zitat Hu X, An H, Li ZhM, Geng Y, Li L, Yang Ch (2009) Origin of carbon nanotubes induced poly(l-lactide) crystallization: surface induced conformational order. Macromolecules 42:3215–3218CrossRef Hu X, An H, Li ZhM, Geng Y, Li L, Yang Ch (2009) Origin of carbon nanotubes induced poly(l-lactide) crystallization: surface induced conformational order. Macromolecules 42:3215–3218CrossRef
22.
Zurück zum Zitat Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly(l-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47:326–339CrossRef Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly(l-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47:326–339CrossRef
23.
Zurück zum Zitat Zhao Y, Qiu Zh, Yan Sh, Yang W (2011) Crystallization behavior of biodegradable poly(l-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci 51:1564–1573CrossRef Zhao Y, Qiu Zh, Yan Sh, Yang W (2011) Crystallization behavior of biodegradable poly(l-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci 51:1564–1573CrossRef
24.
Zurück zum Zitat Mobedi H, Mashak A, Nekoomanesh M, Orafai H (2011) L-lactide additive and in vitro degradation performance of poly(l-lactide) films. Iran Polym J 20:237–245 Mobedi H, Mashak A, Nekoomanesh M, Orafai H (2011) L-lactide additive and in vitro degradation performance of poly(l-lactide) films. Iran Polym J 20:237–245
25.
Zurück zum Zitat Mashak A, Mobedi H, Nekoomanesh M, Ravari F (2011) Crystallization behavior of poly(l-lactide) films in presence of Mg(OH)2 and l-lactide. Iran J Polym Sci Technol (Persian Edition) 23(5):405–413 Mashak A, Mobedi H, Nekoomanesh M, Ravari F (2011) Crystallization behavior of poly(l-lactide) films in presence of Mg(OH)2 and l-lactide. Iran J Polym Sci Technol (Persian Edition) 23(5):405–413
26.
Zurück zum Zitat Zilberman M, Schwade ND, Eberhart RC (2004) Protein-loaded bioresorbable fibers and expandable stents: mechanical properties and protein release. J Biomed Mater Res Part B Appl Biomater 69B:1–10CrossRef Zilberman M, Schwade ND, Eberhart RC (2004) Protein-loaded bioresorbable fibers and expandable stents: mechanical properties and protein release. J Biomed Mater Res Part B Appl Biomater 69B:1–10CrossRef
27.
Zurück zum Zitat Saengsuwan S, Tongkasee P, Sudyoadsuk T, Promarak V, Keawin T, Jungsuttiwong S (2011) Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim 103:1017–1026CrossRef Saengsuwan S, Tongkasee P, Sudyoadsuk T, Promarak V, Keawin T, Jungsuttiwong S (2011) Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim 103:1017–1026CrossRef
28.
Zurück zum Zitat Wu D, Wu L, Xu B, Zhang Y, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Part B Polym Phys 45:1100–1113CrossRef Wu D, Wu L, Xu B, Zhang Y, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Part B Polym Phys 45:1100–1113CrossRef
29.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112CrossRef Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112CrossRef
30.
Zurück zum Zitat Liao R, Yang B, Yu W, Zhou Ch (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef Liao R, Yang B, Yu W, Zhou Ch (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef
31.
Zurück zum Zitat Jeziorny A (1978) Parameters characterizing the kinetics of the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144CrossRef Jeziorny A (1978) Parameters characterizing the kinetics of the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144CrossRef
32.
Zurück zum Zitat Ozawa T (1971) Kinetics of non- isothermal crystallization. Polymer 12:150–158CrossRef Ozawa T (1971) Kinetics of non- isothermal crystallization. Polymer 12:150–158CrossRef
33.
Zurück zum Zitat Liu T, Mo Zh, Wang Sh, Zhang H (1997) Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575CrossRef Liu T, Mo Zh, Wang Sh, Zhang H (1997) Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575CrossRef
34.
Zurück zum Zitat Qiu Zh, Mo Zh, Yu Y, Zhang H, Sheng Sh, Song C (2000) Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone). J Appl Polym Sci 77:2865–2871CrossRef Qiu Zh, Mo Zh, Yu Y, Zhang H, Sheng Sh, Song C (2000) Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone). J Appl Polym Sci 77:2865–2871CrossRef
35.
Zurück zum Zitat Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221CrossRef Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221CrossRef
Metadaten
Titel
Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer
verfasst von
F. Ravari
A. Mashak
M. Nekoomanesh
H. Mobedi
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 9/2013
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-013-0972-6

Weitere Artikel der Ausgabe 9/2013

Polymer Bulletin 9/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.