Skip to main content
Top
Published in: Archive of Applied Mechanics 2/2020

14-10-2019 | Original

Non-iterative explicit integration algorithms based on acceleration time history for nonlinear dynamic systems

Authors: Chao Yang, Qiang Li, Shoune Xiao

Published in: Archive of Applied Mechanics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A two-step explicit acceleration integration method (EAIM2) and a three-step explicit acceleration integration method (EAIM3), which are entirely explicit time integration algorithms, are proposed based on acceleration time history. The computation efforts and costs can be observably reduced on account of avoiding matrix inversion and iteration processes in nonlinear systems. Four nonlinear systems are employed to analyze the EAIM2, the EAIM3, the HHT-\(\upalpha \) method, the Newmark explicit method and the generally used Newmark method for comparison purposes. The results show that the highest orders of accuracy of the EAIM2 and the EAIM3 are all of second order. The stability of the proposed methods can remain in a critical state in undamped systems. The puny energy ratio and the periodic energy growth and decay manifest that the proposed methods are endowed with favorable nonlinear stability. The amplitude attenuation of the proposed methods is zero. The proposed methods and the CDM possess the same period elongation. The period error of the proposed methods is smaller than that of the Newmark method in the stability interval. The EAIM2 and the EAIM3 possess the lowest computation efforts at the same accuracy level in the above-mentioned integration methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bhat, R.B., Dukkipati, R.V.: Advanced Dynamics. Alpha Science International Ltd, Pangbourne (2001)MATH Bhat, R.B., Dukkipati, R.V.: Advanced Dynamics. Alpha Science International Ltd, Pangbourne (2001)MATH
2.
go back to reference Wen, W., Jian, K., Luo, S.: An explicit time integration method for structural dynamics using septuple B-spline functions. Int. J. Numer. Methods Eng. 97(9), 629–657 (2014)MathSciNetCrossRef Wen, W., Jian, K., Luo, S.: An explicit time integration method for structural dynamics using septuple B-spline functions. Int. J. Numer. Methods Eng. 97(9), 629–657 (2014)MathSciNetCrossRef
3.
go back to reference Newmark, N.M.: A method for computation of structural dynamics. J. Eng. Mech. 85(3), 67–94 (1959) Newmark, N.M.: A method for computation of structural dynamics. J. Eng. Mech. 85(3), 67–94 (1959)
4.
go back to reference Wilson, E.L., Farhoomand, I., Bathe, K.J.: Nonlinear dynamic analysis of complex structures. Earthq. Eng. Struct. Dyn. 1(3), 241–252 (1972)CrossRef Wilson, E.L., Farhoomand, I., Bathe, K.J.: Nonlinear dynamic analysis of complex structures. Earthq. Eng. Struct. Dyn. 1(3), 241–252 (1972)CrossRef
5.
go back to reference Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)CrossRef Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)CrossRef
6.
go back to reference Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\upalpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)MathSciNetCrossRef Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\upalpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)MathSciNetCrossRef
7.
go back to reference Tamma, K.K., Sha, D., Zhou, X.: Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192, 257–290 (2003)CrossRef Tamma, K.K., Sha, D., Zhou, X.: Time discretized operators. Part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192, 257–290 (2003)CrossRef
8.
go back to reference Sha, D., Zhou, X., Tamma, K.K.: Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192, 291–329 (2003)CrossRef Sha, D., Zhou, X., Tamma, K.K.: Time discretized operators. Part 2: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192, 291–329 (2003)CrossRef
9.
go back to reference Bonelli, A., Bursi, O.S., Mancuso, M.: Explicit predictor–multicorrector time discontinuous Galerkin methods for non-linear dynamics. J. Sound Vib. 256(4), 695–724 (2002)MathSciNetCrossRef Bonelli, A., Bursi, O.S., Mancuso, M.: Explicit predictor–multicorrector time discontinuous Galerkin methods for non-linear dynamics. J. Sound Vib. 256(4), 695–724 (2002)MathSciNetCrossRef
10.
go back to reference Idesman, A.V., Schmidt, M., Sierakowski, R.L.: A new explicit predictor–multicorrector high-order accurate method for linear elastodynamics. J. Sound Vib. 310(1–2), 217–229 (2008)CrossRef Idesman, A.V., Schmidt, M., Sierakowski, R.L.: A new explicit predictor–multicorrector high-order accurate method for linear elastodynamics. J. Sound Vib. 310(1–2), 217–229 (2008)CrossRef
11.
go back to reference Krenk, S.: Global format for energy–momentum based time integration in nonlinear dynamics. Int. J. Numer. Methods Eng. 100, 458–476 (2014)MathSciNetCrossRef Krenk, S.: Global format for energy–momentum based time integration in nonlinear dynamics. Int. J. Numer. Methods Eng. 100, 458–476 (2014)MathSciNetCrossRef
12.
go back to reference Li, C.Q., Lou, M.L., Jiang, L.Z.: Transformation of implicit method to explicit method for solving structural dynamic equation. J. Vib. Shock 31(13), 91–94 (2012) Li, C.Q., Lou, M.L., Jiang, L.Z.: Transformation of implicit method to explicit method for solving structural dynamic equation. J. Vib. Shock 31(13), 91–94 (2012)
13.
go back to reference Chang, S.Y.: Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn. 79, 1625–1649 (2015)CrossRef Chang, S.Y.: Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems. Nonlinear Dyn. 79, 1625–1649 (2015)CrossRef
14.
go back to reference Chang, S.Y.: A family of noniterative integration methods with desired numerical dissipation. Int. J. Numer. Methods Eng. 100(1), 62–86 (2014)MathSciNetCrossRef Chang, S.Y.: A family of noniterative integration methods with desired numerical dissipation. Int. J. Numer. Methods Eng. 100(1), 62–86 (2014)MathSciNetCrossRef
15.
go back to reference Gui, Y., Wang, J.T., Jin, F., Chen, C., Zhou, M.X.: Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn. 77, 1157–1170 (2014)MathSciNetCrossRef Gui, Y., Wang, J.T., Jin, F., Chen, C., Zhou, M.X.: Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn. 77, 1157–1170 (2014)MathSciNetCrossRef
16.
go back to reference Du, X., Yang, D., Zhou, J., Yan, X., Zhao, Y., Li, S.: New explicit algorithms with controllable numerical dissipation for structural dynamics. Int. J. Struct. Stab. Eng. 18(3), 1–25 (2018)MathSciNet Du, X., Yang, D., Zhou, J., Yan, X., Zhao, Y., Li, S.: New explicit algorithms with controllable numerical dissipation for structural dynamics. Int. J. Struct. Stab. Eng. 18(3), 1–25 (2018)MathSciNet
17.
go back to reference Har, J., Tamma, K.K.: Advances in Computational Dynamics of Particles, Materials and Structures. Wiley, New York (2012)CrossRef Har, J., Tamma, K.K.: Advances in Computational Dynamics of Particles, Materials and Structures. Wiley, New York (2012)CrossRef
18.
go back to reference Masuri, S.U., Hoitink, A., Zhou, X., Tamma, K.K.: Algorithms by design: a new normalized time-weighted residual methodology and design of a family of energy–momentum conserving algorithms for non-linear structural dynamics. Int. J. Numer. Methods Eng. 79, 1094–1146 (2009)MathSciNetCrossRef Masuri, S.U., Hoitink, A., Zhou, X., Tamma, K.K.: Algorithms by design: a new normalized time-weighted residual methodology and design of a family of energy–momentum conserving algorithms for non-linear structural dynamics. Int. J. Numer. Methods Eng. 79, 1094–1146 (2009)MathSciNetCrossRef
19.
go back to reference Zhai, W.M.: Two simple fast integration methods for large-scale dynamic problems in engineering. Int. J. Numer. Methods Eng. 39, 4199–4214 (1996)MathSciNetCrossRef Zhai, W.M.: Two simple fast integration methods for large-scale dynamic problems in engineering. Int. J. Numer. Methods Eng. 39, 4199–4214 (1996)MathSciNetCrossRef
20.
go back to reference Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 116–124 (1978)CrossRef Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6(1), 116–124 (1978)CrossRef
21.
go back to reference Hughes, T.J.R.: Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics. Comput. Struct. 6, 313–324 (1976)MathSciNetCrossRef Hughes, T.J.R.: Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics. Comput. Struct. 6, 313–324 (1976)MathSciNetCrossRef
22.
go back to reference Erlicher, S., Bonaventura, L., Bursi, O.S.: The analysis of the generalized-\(\upalpha \) method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002)MathSciNetCrossRef Erlicher, S., Bonaventura, L., Bursi, O.S.: The analysis of the generalized-\(\upalpha \) method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002)MathSciNetCrossRef
23.
go back to reference Fereidoon, A., Rostamiyan, Y., Akbarzade, M., Ganji, D.D.: Application of He’s homotopy perturbation method to nonlinear shock damper dynamics. Arch. Appl. Mech. 80, 641–649 (2010)CrossRef Fereidoon, A., Rostamiyan, Y., Akbarzade, M., Ganji, D.D.: Application of He’s homotopy perturbation method to nonlinear shock damper dynamics. Arch. Appl. Mech. 80, 641–649 (2010)CrossRef
Metadata
Title
Non-iterative explicit integration algorithms based on acceleration time history for nonlinear dynamic systems
Authors
Chao Yang
Qiang Li
Shoune Xiao
Publication date
14-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 2/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01616-y

Other articles of this Issue 2/2020

Archive of Applied Mechanics 2/2020 Go to the issue

Premium Partners