Skip to main content
Top
Published in: Archive of Applied Mechanics 2/2020

09-10-2019 | Original

Analysis of Hooke-like isotropic hypoelasticity models in view of applications in FE formulations

Author: S. N. Korobeynikov

Published in: Archive of Applied Mechanics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents an analysis of the constitutive relations of Hooke-like isotropic hypoelastic material models in Lagrangian and Eulerian forms generated using corotational stress rates with associated spin tensors from the family of material spin tensors. Explicit expressions were obtained for the Lagrangian and Eulerian tangent stiffness tensors for the hypoelastic materials considered. The main result of this study is a proof that these fourth-order tensors have full symmetry only for material models generated using two corotational stress rates: the Zaremba–Jaumann and the logarithmic ones. In the latter case, the Hooke-like isotropic hypoelastic material is simultaneously the Hencky isotropic hyperelastic material. For the material models considered, basis-free expressions for the material and spatial tangent stiffness tensors are obtained that can be implemented in FE codes. In particular, new basis-free expressions are derived for the tangent stiffness (elasticity) tensors for the Hencky isotropic hyperelastic material model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The history of the derivation of this type of constitutive relations is described in [81, 83]. In these papers, the role of Zaremba (1903) and Jaumann (1911) as pioneers in this area of continuum mechanics is highlighted.
 
2
Nevertheless, it is possible to construct scenarios of thermomechanical processes that give the current stress distribution in the Earth’s crust, as was done, e.g., in a simulation study [2, 50] of geophysical processes using the commercial MSC.Marc code.
 
3
Hill [40] defines elasto-plastic materials as materials for which some objective rate of the Cauchy stress tensor \(\varvec{\sigma }^\nabla \) is linked to the stretching tensor \({\mathbf {d}}\) by a first-order homogeneous relation, but the coefficients of this relation also implicitly depend on the tensor \({\mathbf {d}}\).
 
4
In some papers (cf., [76]), the Gurtin–Spear corotational rate is referred to as the Sowerby–Chu corotational rate [75] one.
 
5
Hereinafter, tensors having both major and twice minor symmetries will be called supersymmetric (cf., [44]) or fully symmetric (cf., [26]) tensors.
 
6
The number m (\(1\le m\le 3\)) will be called the eigenindex.
 
7
Hereinafter, the notation \(\sum _{i\ne j=1}^{m}\) denotes the summation over \(i,j=1,\ldots , m\) and \(i\ne j\) and this summation is assumed to vanish when \(m=1\).
 
8
Hereinafter, the subset \({\mathcal {T}}^{2\,+}_\text {orth}\subset {\mathcal {T}}^2\) denotes the set of all proper orthogonal second-order tensors (i.e., the tensors \(\varvec{\varPsi }\) such that \(\varvec{\varPsi }\cdot \varvec{\varPsi }^T={\mathbf {I}}\) and \(\det \varvec{\varPsi }=1\)).
 
9
Hereinafter, we assume that all the tensors \({\mathbf {H}}\in {\mathcal {T}}^2\) are sufficiently smooth functions of a monotonically increasing parameter t (time), and we define the material time derivative (material rate) of the tensor \({\mathbf {H}}\): \(\dot{{\mathbf {H}}}\equiv \partial {\mathbf {H}}/\partial t\).
 
10
The tensors \(\varvec{\varOmega }^L,\,\varvec{\omega }^E\in {\mathcal {T}}^2_{\text {skew}}\) are the twirl tensors of the Lagrangian and Eulerian triads, respectively.
 
11
Hereinafter, the tensor \({\mathbb {O}}\) is the zero fourth-order tensor.
 
12
In most of the studies cited, hypoelasticity relations are written in Eulerian form using the Cauchy stress tensor \(\varvec{\sigma }\), rather than the Kirchhoff stress tensor \(\varvec{\tau }\), to determine corotational stress rates. However, in the simple shear problem, \(J=1\), whence \(\varvec{\sigma }=\varvec{\tau }\), so that for all hypoelasticity models in the simple shear problem, the constitutive relations of Hooke-like isotropic hypoelastic material models based on corotational rates have form (30).
 
13
The oscillating behavior of the Cauchy stress tensor components for this material model was first noted by Prager [69].
 
14
The Green–Naghdi corotational rate of the Eulerian tensor \({\mathbf {h}}\in {\mathcal {T}}^2\) is defined as \({\mathbf {h}}^{GN} \equiv \dot{{\mathbf {h}}} - \varvec{\omega }^R \cdot {\mathbf {h}} + {\mathbf {h}} \cdot \varvec{\omega }^R\).
 
15
The more general statement holds: For the isotropic Cauchy elastic material, tensors in pairs \((\bar{\varvec{\tau }},{\mathbf {U}})\) and \((\varvec{\tau },{\mathbf {V}})\) are coaxial (cf., [63]).
 
16
In particular, hypoelastic materials do not depend on natural time (cf., [40]).
 
17
The last statement can be generalized: The Cauchy stress tensor \(\varvec{\sigma }\) and any Eulerian strain tensor \({\mathbf {e}}\) from the Hill family are work-conjugate not in the classical sense due to the equality \({\mathbf {e}}^{\varDelta }={\mathbf {d}}\), where \({\mathbf {e}}^{\varDelta }\) is some convective rate of this tensor which is a corotational rate only if \({\mathbf {e}}={\mathbf {e}}^{(0)}\) and this corotational rate is logarithmic (cf., [16]).
 
18
Sometimes, the Hill stress rate is called the Biezeno–Hencky stress rate (cf., [45]).
 
19
More precisely, the tensors used in (30)\(_2\) have Eulerian objectivity, which is only considered in [83]. Starting from the book by Ogden [63], objective tensors include Lagrangian tensors, along with Eulerian ones.
 
20
This statement contradicts the statement (see [60]) of the equivalence of hypoelasticity formulations based on any corotational rate, including the Gurtin–Spear one.
 
Literature
1.
go back to reference Atluri, S.N.: On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput. Methods Appl. Mech. Eng. 43, 137–171 (1984)MATH Atluri, S.N.: On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput. Methods Appl. Mech. Eng. 43, 137–171 (1984)MATH
2.
go back to reference Babichev, A.V., Korobeynikov, S.N., Polyansky, O.P., Reverdatto, V.V.: Computer modeling of folding in rocks. Doklady Earth Sci. 455(1), 327–330 (2014) Babichev, A.V., Korobeynikov, S.N., Polyansky, O.P., Reverdatto, V.V.: Computer modeling of folding in rocks. Doklady Earth Sci. 455(1), 327–330 (2014)
3.
go back to reference Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)MATH Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)MATH
4.
go back to reference Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001)MATH Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001)MATH
5.
go back to reference Batra, R.C.: Elements of Continuum Mechanics. AIAA, Reston (2006)MATH Batra, R.C.: Elements of Continuum Mechanics. AIAA, Reston (2006)MATH
6.
go back to reference Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971)MATH Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971)MATH
7.
go back to reference Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996)MATH Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996)MATH
8.
go back to reference Bažant, Z.P., Vorel, J.: Energy-conservation error due to use of Green-Naghdi objective stress rate in finite-element codes and its compensation. J. Appl. Mech. 81, 021008 (2014) Bažant, Z.P., Vorel, J.: Energy-conservation error due to use of Green-Naghdi objective stress rate in finite-element codes and its compensation. J. Appl. Mech. 81, 021008 (2014)
9.
go back to reference Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987)
10.
go back to reference Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)MATH Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)MATH
11.
go back to reference Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012)MATH Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012)MATH
12.
go back to reference Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)MATH Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)MATH
13.
go back to reference Biot, M.A.: Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. Wiley, New York (1965) Biot, M.A.: Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. Wiley, New York (1965)
14.
go back to reference Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)MATH Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)MATH
15.
go back to reference Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)MATH Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)MATH
16.
go back to reference Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. R. Soc. Lond. A 460, 909–928 (2004)MathSciNetMATH Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. R. Soc. Lond. A 460, 909–928 (2004)MathSciNetMATH
17.
go back to reference Bruhns, O.T.: The Prandtl–Reuss equations revisited. Z. Angew. Math. Mech. 94(3), 187–202 (2014)MathSciNetMATH Bruhns, O.T.: The Prandtl–Reuss equations revisited. Z. Angew. Math. Mech. 94(3), 187–202 (2014)MathSciNetMATH
18.
go back to reference Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Barcelona (2013)MATH Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Barcelona (2013)MATH
19.
go back to reference Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures: Vol. 2. Advanced Topics. Wiley, Chichester (1997)MATH Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures: Vol. 2. Advanced Topics. Wiley, Chichester (1997)MATH
20.
go back to reference Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991)MathSciNet Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991)MathSciNet
21.
go back to reference Curnier, A.: Computational Methods in Solid Mechanics. Kluwer, Dordrecht (1994)MATH Curnier, A.: Computational Methods in Solid Mechanics. Kluwer, Dordrecht (1994)MATH
22.
go back to reference de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012)MATH de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012)MATH
23.
go back to reference de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008) de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)
24.
go back to reference Dienes, J.K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217–232 (1979)MathSciNetMATH Dienes, J.K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217–232 (1979)MathSciNetMATH
25.
go back to reference Dienes, J.K.: A discussion of material rotation and stress rate. Acta Mech. 65, 1–11 (1986)MATH Dienes, J.K.: A discussion of material rotation and stress rate. Acta Mech. 65, 1–11 (1986)MATH
26.
go back to reference Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47, 273–284 (2012) Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47, 273–284 (2012)
27.
go back to reference Flanagan, D.P., Taylor, L.M.: An accurate numerical algorithm for stress integration with finite rotations. Comput. Methods Appl. Mech. Eng. 62, 305–320 (1987)MATH Flanagan, D.P., Taylor, L.M.: An accurate numerical algorithm for stress integration with finite rotations. Comput. Methods Appl. Mech. Eng. 62, 305–320 (1987)MATH
28.
go back to reference Freed, A.D.: Soft Solids: A Primer to the Theoretical Mechanics of Materials. Birkhäuser, Cham (2014)MATH Freed, A.D.: Soft Solids: A Primer to the Theoretical Mechanics of Materials. Birkhäuser, Cham (2014)MATH
29.
go back to reference Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965) Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965)
30.
go back to reference Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. World Scientific, Singapur (2001)MATH Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. World Scientific, Singapur (2001)MATH
31.
go back to reference Gambirasio, L., Chiantoni, G., Rizzi, E.: On the consequences of the adoption of the Zaremba–Jaumann objective stress rate in FEM codes. Arch. Comput. Methods Eng. 23, 39–67 (2016)MathSciNetMATH Gambirasio, L., Chiantoni, G., Rizzi, E.: On the consequences of the adoption of the Zaremba–Jaumann objective stress rate in FEM codes. Arch. Comput. Methods Eng. 23, 39–67 (2016)MathSciNetMATH
32.
go back to reference Green, A.E., McInnis, B.C.: Generalized hypo-elasticity. Proc. R. Soc. Edinburgh. Secti. A Math. 67(3), 220–230 (1967)MathSciNetMATH Green, A.E., McInnis, B.C.: Generalized hypo-elasticity. Proc. R. Soc. Edinburgh. Secti. A Math. 67(3), 220–230 (1967)MathSciNetMATH
33.
go back to reference Gurtin, M.E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983)MathSciNetMATH Gurtin, M.E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983)MathSciNetMATH
34.
go back to reference Hackett, R.M.: Hyperelasticity Primer. Springer, Heidelberg (2016) Hackett, R.M.: Hyperelasticity Primer. Springer, Heidelberg (2016)
35.
go back to reference Halleux, J.P., Donea, J.: A discussion of Cauchy stress formulations for large strain analysis. In: Bergan, P.G., Bathe, K.J., Wunderlich, W. (eds.) Finite Element Methods for Nonlinear Problems: Europe-US Symposium, pp. 61–74. Springer, Berlin (1986) Halleux, J.P., Donea, J.: A discussion of Cauchy stress formulations for large strain analysis. In: Bergan, P.G., Bathe, K.J., Wunderlich, W. (eds.) Finite Element Methods for Nonlinear Problems: Europe-US Symposium, pp. 61–74. Springer, Berlin (1986)
36.
go back to reference Hashiguchi, K.: Elastoplasticity Theory. Springer, Berlin (2009)MATH Hashiguchi, K.: Elastoplasticity Theory. Springer, Berlin (2009)MATH
37.
go back to reference Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013) Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013)
38.
go back to reference Healy, B.E., Dodds Jr., R.H.: A large strain plasticity model for implicit finite element analyses. Comput. Mech. 9, 95–112 (1992)MATH Healy, B.E., Dodds Jr., R.H.: A large strain plasticity model for implicit finite element analyses. Comput. Mech. 9, 95–112 (1992)MATH
39.
go back to reference Hill, R.: A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958)MATH Hill, R.: A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958)MATH
40.
go back to reference Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7(3), 209–225 (1959)MathSciNetMATH Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7(3), 209–225 (1959)MathSciNetMATH
41.
go back to reference Hill, R.: On constitutive inequalities for simple materials – I. J. Mech. Phys. Solids 16(4), 229–242 (1968)MATH Hill, R.: On constitutive inequalities for simple materials – I. J. Mech. Phys. Solids 16(4), 229–242 (1968)MATH
42.
go back to reference Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978) Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978)
43.
go back to reference Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Egineering. Wiley, Chichester (2000)MATH Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Egineering. Wiley, Chichester (2000)MATH
44.
go back to reference Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015)MATH Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015)MATH
45.
go back to reference Ji, W., Waas, A.M., Bažant, Z.P.: On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J. Appl. Mech. 80, 041024 (2013) Ji, W., Waas, A.M., Bažant, Z.P.: On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J. Appl. Mech. 80, 041024 (2013)
46.
go back to reference Johnson, G.C., Bammann, D.J.: A discussion of stress rates in finite deformation problems. Int. J. Solids Struct. 20(8), 725–737 (1984)MATH Johnson, G.C., Bammann, D.J.: A discussion of stress rates in finite deformation problems. Int. J. Solids Struct. 20(8), 725–737 (1984)MATH
47.
go back to reference Korobeynikov, S.N.: Nonlinear strain analysis of solids. Sib. Div. Russ. Acad. Sci, Novosibirsk (2000). (in Russian) Korobeynikov, S.N.: Nonlinear strain analysis of solids. Sib. Div. Russ. Acad. Sci, Novosibirsk (2000). (in Russian)
48.
go back to reference Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)MathSciNetMATH Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)MathSciNetMATH
49.
go back to reference Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011)MATH Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011)MATH
50.
go back to reference Korobeinikov, S.N., Reverdatto, V.V., Polyanskii, O.P., Sverdlova, V.G., Babichev, A.V.: Surface topography formation in a region of plate collision: mathematical modeling. J. Appl. Mech. Tech. Phys. 53(4), 577–588 (2012)MATH Korobeinikov, S.N., Reverdatto, V.V., Polyanskii, O.P., Sverdlova, V.G., Babichev, A.V.: Surface topography formation in a region of plate collision: mathematical modeling. J. Appl. Mech. Tech. Phys. 53(4), 577–588 (2012)MATH
51.
go back to reference Korobeynikov, S.N., Oleinikov, A.A., Babichev, A.V., Larichkin, A.Y., Alyokhin, V.V.: Computer implementation of Lagrangian formulation of Hencky’s isotropic hyperelastic material constitutive relations. Far East. Math. J. 13(2), 229–249 (2013). (in Russian) Korobeynikov, S.N., Oleinikov, A.A., Babichev, A.V., Larichkin, A.Y., Alyokhin, V.V.: Computer implementation of Lagrangian formulation of Hencky’s isotropic hyperelastic material constitutive relations. Far East. Math. J. 13(2), 229–249 (2013). (in Russian)
52.
go back to reference Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018)MathSciNetMATH Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018)MathSciNetMATH
53.
go back to reference Korobeynikov, S.N.: Objective symmetrically physical strain tensors, conjugate stress tensors, and Hill’s linear isotropic hyperelastic material models. J. Elast. 136, 159–187 (2019)MathSciNetMATH Korobeynikov, S.N.: Objective symmetrically physical strain tensors, conjugate stress tensors, and Hill’s linear isotropic hyperelastic material models. J. Elast. 136, 159–187 (2019)MathSciNetMATH
54.
go back to reference Lehmann, T., Guo, Z.H., Liang, H.: The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A Solids 10(4), 395–404 (1991)MathSciNetMATH Lehmann, T., Guo, Z.H., Liang, H.: The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A Solids 10(4), 395–404 (1991)MathSciNetMATH
55.
go back to reference Lin, R.C., Schomburg, U., Kletschkowski, T.: Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur. J. Mech. A Solids 22, 443–461 (2003)MATH Lin, R.C., Schomburg, U., Kletschkowski, T.: Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur. J. Mech. A Solids 22, 443–461 (2003)MATH
56.
go back to reference Lin, R.C.: Hypoelasticity-based analytical stress solutions in the simple shearing process. Z. Angew. Math. Mech. 83(3), 163–171 (2003)MathSciNetMATH Lin, R.C.: Hypoelasticity-based analytical stress solutions in the simple shearing process. Z. Angew. Math. Mech. 83(3), 163–171 (2003)MathSciNetMATH
57.
go back to reference Liu, C.S., Hong, H.K.: Non-oscillation criteria for hypoelastic models under simple shear deformation. J. Elast. 57, 201–241 (1999)MathSciNetMATH Liu, C.S., Hong, H.K.: Non-oscillation criteria for hypoelastic models under simple shear deformation. J. Elast. 57, 201–241 (1999)MathSciNetMATH
58.
go back to reference Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representatin of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990)MATH Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representatin of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990)MATH
59.
go back to reference MARC Users Guide: Vol. A. Theory and Users Information. MSC.Software Corporation, Santa Ana (2015) MARC Users Guide: Vol. A. Theory and Users Information. MSC.Software Corporation, Santa Ana (2015)
60.
go back to reference Metzger, D.R., Dubey, R.N.: Objective tensor rates and frame indifferent constitutive models. Mech. Res. Commun. 13(2), 91–96 (1986)MathSciNetMATH Metzger, D.R., Dubey, R.N.: Objective tensor rates and frame indifferent constitutive models. Mech. Res. Commun. 13(2), 91–96 (1986)MathSciNetMATH
61.
go back to reference Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015)MathSciNetMATH Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015)MathSciNetMATH
62.
go back to reference Nguyen, N., Waas, A.M.: Nonlinear, finite deformation, finite element analysis. Z. Angew. Math. Phys. 67, 35 (2016)MathSciNetMATH Nguyen, N., Waas, A.M.: Nonlinear, finite deformation, finite element analysis. Z. Angew. Math. Phys. 67, 35 (2016)MathSciNetMATH
63.
go back to reference Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)MATH Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)MATH
64.
go back to reference Perić, D.: On consistent stress rates in solid mechanics: computational implications. Int. J. Numer. Methods Eng. 33, 799–817 (1992)MATH Perić, D.: On consistent stress rates in solid mechanics: computational implications. Int. J. Numer. Methods Eng. 33, 799–817 (1992)MATH
65.
go back to reference Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009)MathSciNetMATH Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009)MathSciNetMATH
66.
go back to reference Pinsky, P.M., Ortiz, M., Pister, K.S.: Numerical integration of rate constitutive equations in finite deformation analysis. Comput. Methods Appl. Mech. Eng. 40, 137–158 (1983)MATH Pinsky, P.M., Ortiz, M., Pister, K.S.: Numerical integration of rate constitutive equations in finite deformation analysis. Comput. Methods Appl. Mech. Eng. 40, 137–158 (1983)MATH
67.
go back to reference Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Compos. Struct. 84, 1141–1150 (2006) Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Compos. Struct. 84, 1141–1150 (2006)
68.
go back to reference Prager, W.: An elementary discussion of definitions of stress rates. Q. Appl. Math. 18, 403–407 (1960)MathSciNetMATH Prager, W.: An elementary discussion of definitions of stress rates. Q. Appl. Math. 18, 403–407 (1960)MathSciNetMATH
69.
go back to reference Prager, W.: Einführung in die Kontinuumsmechanik. Birkhäuser, Basel, Stuttgart (1961) [Prager, W.: Introduction to Mechanics of Continua. Dover Publications, Mineola, N.Y. (2004)] Prager, W.: Einführung in die Kontinuumsmechanik. Birkhäuser, Basel, Stuttgart (1961) [Prager, W.: Introduction to Mechanics of Continua. Dover Publications, Mineola, N.Y. (2004)]
70.
go back to reference Reinhardt, W.D., Dubey, R.N.: Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Commun. 22(2), 165–170 (1995)MATH Reinhardt, W.D., Dubey, R.N.: Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Commun. 22(2), 165–170 (1995)MATH
71.
go back to reference Reinhardt, W.D., Dubey, R.N.: Coordinate-independent representation of spins in continuum mechanics. J. Elast. 42, 133–144 (1996)MathSciNetMATH Reinhardt, W.D., Dubey, R.N.: Coordinate-independent representation of spins in continuum mechanics. J. Elast. 42, 133–144 (1996)MathSciNetMATH
72.
go back to reference Reinhardt, W.D., Dubey, R.N.: Application of objective rates in mechanical modeling of solids. J. Appl. Mech. 63(3), 692–698 (1996)MathSciNetMATH Reinhardt, W.D., Dubey, R.N.: Application of objective rates in mechanical modeling of solids. J. Appl. Mech. 63(3), 692–698 (1996)MathSciNetMATH
73.
go back to reference Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, N.Y., Berlin, Heidelberg (1998)MATH Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, N.Y., Berlin, Heidelberg (1998)MATH
74.
go back to reference Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)MATH Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)MATH
75.
go back to reference Sowerby, R., Chu, E.: Rotations, stress rates and strain measures in homogeneous deformation processes. Int. J. Solids Struct. 20, 1037–1048 (1984)MATH Sowerby, R., Chu, E.: Rotations, stress rates and strain measures in homogeneous deformation processes. Int. J. Solids Struct. 20, 1037–1048 (1984)MATH
76.
go back to reference Szabó, L., Balla, M.: Comparison of some stress rates. Int. J. Solids Struct. 25(3), 279–297 (1989)MathSciNet Szabó, L., Balla, M.: Comparison of some stress rates. Int. J. Solids Struct. 25(3), 279–297 (1989)MathSciNet
77.
78.
go back to reference Truesdell, C.: The simplest rate theory of pure elasticity. Commun. Pure Appl. Math. 8, 123–132 (1955)MathSciNetMATH Truesdell, C.: The simplest rate theory of pure elasticity. Commun. Pure Appl. Math. 8, 123–132 (1955)MathSciNetMATH
81.
go back to reference Truesdell, C.: Remarks on hypo-elasticity. J. Res. Natl. Bur. Stand. B Math. Math. Phys. 67B, 141–143 (1963)MathSciNetMATH Truesdell, C.: Remarks on hypo-elasticity. J. Res. Natl. Bur. Stand. B Math. Math. Phys. 67B, 141–143 (1963)MathSciNetMATH
82.
go back to reference Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, III(1), pp. 226–793. Springer, Berlin (1960) Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, III(1), pp. 226–793. Springer, Berlin (1960)
83.
go back to reference Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)
84.
go back to reference Trusov, P.V., Shveykin, A.I.: On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites. Physical Mesomechanics 20(4), 377–391 (2017) Trusov, P.V., Shveykin, A.I.: On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites. Physical Mesomechanics 20(4), 377–391 (2017)
85.
go back to reference Vorel, J., Bažant, Z.P., Gattu, M.: Elastic soft-core sandwich plates: critical loads and energy errors in commercial codes due to choice of objective stress rate. J. Appl. Mech. 80, 041034 (2013) Vorel, J., Bažant, Z.P., Gattu, M.: Elastic soft-core sandwich plates: critical loads and energy errors in commercial codes due to choice of objective stress rate. J. Appl. Mech. 80, 041034 (2013)
86.
go back to reference Vorel, J., Bažant, Z.P.: Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates. Adv. Eng. Softw. 72, 3–7 (2014) Vorel, J., Bažant, Z.P.: Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates. Adv. Eng. Softw. 72, 3–7 (2014)
87.
go back to reference Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATH Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATH
88.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)MathSciNetMATH
89.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)MathSciNetMATH
90.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35(30), 4001–4014 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35(30), 4001–4014 (1998)MathSciNetMATH
91.
92.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress. Mech. Res. Commun. 25(1), 59–67 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress. Mech. Res. Commun. 25(1), 59–67 (1998)MathSciNetMATH
93.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998)MathSciNetMATH
94.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)MathSciNetMATH
95.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}{}^{\ast }=\lambda (\text{ tr }\,\mathbf{D})\mathbf{I}+2\mu \mathbf{D}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999) Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}{}^{\ast }=\lambda (\text{ tr }\,\mathbf{D})\mathbf{I}+2\mu \mathbf{D}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)
96.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)MathSciNetMATH
97.
go back to reference Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002)MATH Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002)MATH
98.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech. 176, 135–151 (2005)MATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech. 176, 135–151 (2005)MATH
99.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, cyclic deformation paths, and residual stress accumulation. ZAMM (Z. Angew. Math. Mech.) 86(11), 843–855 (2006)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, cyclic deformation paths, and residual stress accumulation. ZAMM (Z. Angew. Math. Mech.) 86(11), 843–855 (2006)MathSciNetMATH
100.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)MATH Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)MATH
101.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: The integrability criterion in finite elastoplasticity and its constitutive implications. Acta Mech. 188, 227–244 (2007)MATH Xiao, H., Bruhns, O.T., Meyers, A.: The integrability criterion in finite elastoplasticity and its constitutive implications. Acta Mech. 188, 227–244 (2007)MATH
102.
go back to reference Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T.: Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014) Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T.: Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014)
Metadata
Title
Analysis of Hooke-like isotropic hypoelasticity models in view of applications in FE formulations
Author
S. N. Korobeynikov
Publication date
09-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 2/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01611-3

Other articles of this Issue 2/2020

Archive of Applied Mechanics 2/2020 Go to the issue

Premium Partners