Skip to main content
Erschienen in: Archive of Applied Mechanics 2/2020

09.10.2019 | Original

Analysis of Hooke-like isotropic hypoelasticity models in view of applications in FE formulations

verfasst von: S. N. Korobeynikov

Erschienen in: Archive of Applied Mechanics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an analysis of the constitutive relations of Hooke-like isotropic hypoelastic material models in Lagrangian and Eulerian forms generated using corotational stress rates with associated spin tensors from the family of material spin tensors. Explicit expressions were obtained for the Lagrangian and Eulerian tangent stiffness tensors for the hypoelastic materials considered. The main result of this study is a proof that these fourth-order tensors have full symmetry only for material models generated using two corotational stress rates: the Zaremba–Jaumann and the logarithmic ones. In the latter case, the Hooke-like isotropic hypoelastic material is simultaneously the Hencky isotropic hyperelastic material. For the material models considered, basis-free expressions for the material and spatial tangent stiffness tensors are obtained that can be implemented in FE codes. In particular, new basis-free expressions are derived for the tangent stiffness (elasticity) tensors for the Hencky isotropic hyperelastic material model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The history of the derivation of this type of constitutive relations is described in [81, 83]. In these papers, the role of Zaremba (1903) and Jaumann (1911) as pioneers in this area of continuum mechanics is highlighted.
 
2
Nevertheless, it is possible to construct scenarios of thermomechanical processes that give the current stress distribution in the Earth’s crust, as was done, e.g., in a simulation study [2, 50] of geophysical processes using the commercial MSC.Marc code.
 
3
Hill [40] defines elasto-plastic materials as materials for which some objective rate of the Cauchy stress tensor \(\varvec{\sigma }^\nabla \) is linked to the stretching tensor \({\mathbf {d}}\) by a first-order homogeneous relation, but the coefficients of this relation also implicitly depend on the tensor \({\mathbf {d}}\).
 
4
In some papers (cf., [76]), the Gurtin–Spear corotational rate is referred to as the Sowerby–Chu corotational rate [75] one.
 
5
Hereinafter, tensors having both major and twice minor symmetries will be called supersymmetric (cf., [44]) or fully symmetric (cf., [26]) tensors.
 
6
The number m (\(1\le m\le 3\)) will be called the eigenindex.
 
7
Hereinafter, the notation \(\sum _{i\ne j=1}^{m}\) denotes the summation over \(i,j=1,\ldots , m\) and \(i\ne j\) and this summation is assumed to vanish when \(m=1\).
 
8
Hereinafter, the subset \({\mathcal {T}}^{2\,+}_\text {orth}\subset {\mathcal {T}}^2\) denotes the set of all proper orthogonal second-order tensors (i.e., the tensors \(\varvec{\varPsi }\) such that \(\varvec{\varPsi }\cdot \varvec{\varPsi }^T={\mathbf {I}}\) and \(\det \varvec{\varPsi }=1\)).
 
9
Hereinafter, we assume that all the tensors \({\mathbf {H}}\in {\mathcal {T}}^2\) are sufficiently smooth functions of a monotonically increasing parameter t (time), and we define the material time derivative (material rate) of the tensor \({\mathbf {H}}\): \(\dot{{\mathbf {H}}}\equiv \partial {\mathbf {H}}/\partial t\).
 
10
The tensors \(\varvec{\varOmega }^L,\,\varvec{\omega }^E\in {\mathcal {T}}^2_{\text {skew}}\) are the twirl tensors of the Lagrangian and Eulerian triads, respectively.
 
11
Hereinafter, the tensor \({\mathbb {O}}\) is the zero fourth-order tensor.
 
12
In most of the studies cited, hypoelasticity relations are written in Eulerian form using the Cauchy stress tensor \(\varvec{\sigma }\), rather than the Kirchhoff stress tensor \(\varvec{\tau }\), to determine corotational stress rates. However, in the simple shear problem, \(J=1\), whence \(\varvec{\sigma }=\varvec{\tau }\), so that for all hypoelasticity models in the simple shear problem, the constitutive relations of Hooke-like isotropic hypoelastic material models based on corotational rates have form (30).
 
13
The oscillating behavior of the Cauchy stress tensor components for this material model was first noted by Prager [69].
 
14
The Green–Naghdi corotational rate of the Eulerian tensor \({\mathbf {h}}\in {\mathcal {T}}^2\) is defined as \({\mathbf {h}}^{GN} \equiv \dot{{\mathbf {h}}} - \varvec{\omega }^R \cdot {\mathbf {h}} + {\mathbf {h}} \cdot \varvec{\omega }^R\).
 
15
The more general statement holds: For the isotropic Cauchy elastic material, tensors in pairs \((\bar{\varvec{\tau }},{\mathbf {U}})\) and \((\varvec{\tau },{\mathbf {V}})\) are coaxial (cf., [63]).
 
16
In particular, hypoelastic materials do not depend on natural time (cf., [40]).
 
17
The last statement can be generalized: The Cauchy stress tensor \(\varvec{\sigma }\) and any Eulerian strain tensor \({\mathbf {e}}\) from the Hill family are work-conjugate not in the classical sense due to the equality \({\mathbf {e}}^{\varDelta }={\mathbf {d}}\), where \({\mathbf {e}}^{\varDelta }\) is some convective rate of this tensor which is a corotational rate only if \({\mathbf {e}}={\mathbf {e}}^{(0)}\) and this corotational rate is logarithmic (cf., [16]).
 
18
Sometimes, the Hill stress rate is called the Biezeno–Hencky stress rate (cf., [45]).
 
19
More precisely, the tensors used in (30)\(_2\) have Eulerian objectivity, which is only considered in [83]. Starting from the book by Ogden [63], objective tensors include Lagrangian tensors, along with Eulerian ones.
 
20
This statement contradicts the statement (see [60]) of the equivalence of hypoelasticity formulations based on any corotational rate, including the Gurtin–Spear one.
 
Literatur
1.
Zurück zum Zitat Atluri, S.N.: On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput. Methods Appl. Mech. Eng. 43, 137–171 (1984)MATH Atluri, S.N.: On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput. Methods Appl. Mech. Eng. 43, 137–171 (1984)MATH
2.
Zurück zum Zitat Babichev, A.V., Korobeynikov, S.N., Polyansky, O.P., Reverdatto, V.V.: Computer modeling of folding in rocks. Doklady Earth Sci. 455(1), 327–330 (2014) Babichev, A.V., Korobeynikov, S.N., Polyansky, O.P., Reverdatto, V.V.: Computer modeling of folding in rocks. Doklady Earth Sci. 455(1), 327–330 (2014)
3.
Zurück zum Zitat Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)MATH Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Upper Saddle River (1996)MATH
4.
Zurück zum Zitat Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001)MATH Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001)MATH
5.
Zurück zum Zitat Batra, R.C.: Elements of Continuum Mechanics. AIAA, Reston (2006)MATH Batra, R.C.: Elements of Continuum Mechanics. AIAA, Reston (2006)MATH
6.
Zurück zum Zitat Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971)MATH Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38, 919–928 (1971)MATH
7.
Zurück zum Zitat Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996)MATH Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996)MATH
8.
Zurück zum Zitat Bažant, Z.P., Vorel, J.: Energy-conservation error due to use of Green-Naghdi objective stress rate in finite-element codes and its compensation. J. Appl. Mech. 81, 021008 (2014) Bažant, Z.P., Vorel, J.: Energy-conservation error due to use of Green-Naghdi objective stress rate in finite-element codes and its compensation. J. Appl. Mech. 81, 021008 (2014)
9.
Zurück zum Zitat Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987)
10.
Zurück zum Zitat Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)MATH Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)MATH
11.
Zurück zum Zitat Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012)MATH Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012)MATH
12.
Zurück zum Zitat Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)MATH Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)MATH
13.
Zurück zum Zitat Biot, M.A.: Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. Wiley, New York (1965) Biot, M.A.: Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. Wiley, New York (1965)
14.
Zurück zum Zitat Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)MATH Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)MATH
15.
Zurück zum Zitat Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)MATH Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)MATH
16.
Zurück zum Zitat Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. R. Soc. Lond. A 460, 909–928 (2004)MathSciNetMATH Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. R. Soc. Lond. A 460, 909–928 (2004)MathSciNetMATH
17.
Zurück zum Zitat Bruhns, O.T.: The Prandtl–Reuss equations revisited. Z. Angew. Math. Mech. 94(3), 187–202 (2014)MathSciNetMATH Bruhns, O.T.: The Prandtl–Reuss equations revisited. Z. Angew. Math. Mech. 94(3), 187–202 (2014)MathSciNetMATH
18.
Zurück zum Zitat Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Barcelona (2013)MATH Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Barcelona (2013)MATH
19.
Zurück zum Zitat Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures: Vol. 2. Advanced Topics. Wiley, Chichester (1997)MATH Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures: Vol. 2. Advanced Topics. Wiley, Chichester (1997)MATH
20.
Zurück zum Zitat Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991)MathSciNet Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991)MathSciNet
21.
Zurück zum Zitat Curnier, A.: Computational Methods in Solid Mechanics. Kluwer, Dordrecht (1994)MATH Curnier, A.: Computational Methods in Solid Mechanics. Kluwer, Dordrecht (1994)MATH
22.
Zurück zum Zitat de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012)MATH de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012)MATH
23.
Zurück zum Zitat de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008) de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)
24.
Zurück zum Zitat Dienes, J.K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217–232 (1979)MathSciNetMATH Dienes, J.K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217–232 (1979)MathSciNetMATH
25.
Zurück zum Zitat Dienes, J.K.: A discussion of material rotation and stress rate. Acta Mech. 65, 1–11 (1986)MATH Dienes, J.K.: A discussion of material rotation and stress rate. Acta Mech. 65, 1–11 (1986)MATH
26.
Zurück zum Zitat Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47, 273–284 (2012) Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47, 273–284 (2012)
27.
Zurück zum Zitat Flanagan, D.P., Taylor, L.M.: An accurate numerical algorithm for stress integration with finite rotations. Comput. Methods Appl. Mech. Eng. 62, 305–320 (1987)MATH Flanagan, D.P., Taylor, L.M.: An accurate numerical algorithm for stress integration with finite rotations. Comput. Methods Appl. Mech. Eng. 62, 305–320 (1987)MATH
28.
Zurück zum Zitat Freed, A.D.: Soft Solids: A Primer to the Theoretical Mechanics of Materials. Birkhäuser, Cham (2014)MATH Freed, A.D.: Soft Solids: A Primer to the Theoretical Mechanics of Materials. Birkhäuser, Cham (2014)MATH
29.
Zurück zum Zitat Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965) Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs (1965)
30.
Zurück zum Zitat Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. World Scientific, Singapur (2001)MATH Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. World Scientific, Singapur (2001)MATH
31.
Zurück zum Zitat Gambirasio, L., Chiantoni, G., Rizzi, E.: On the consequences of the adoption of the Zaremba–Jaumann objective stress rate in FEM codes. Arch. Comput. Methods Eng. 23, 39–67 (2016)MathSciNetMATH Gambirasio, L., Chiantoni, G., Rizzi, E.: On the consequences of the adoption of the Zaremba–Jaumann objective stress rate in FEM codes. Arch. Comput. Methods Eng. 23, 39–67 (2016)MathSciNetMATH
32.
Zurück zum Zitat Green, A.E., McInnis, B.C.: Generalized hypo-elasticity. Proc. R. Soc. Edinburgh. Secti. A Math. 67(3), 220–230 (1967)MathSciNetMATH Green, A.E., McInnis, B.C.: Generalized hypo-elasticity. Proc. R. Soc. Edinburgh. Secti. A Math. 67(3), 220–230 (1967)MathSciNetMATH
33.
Zurück zum Zitat Gurtin, M.E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983)MathSciNetMATH Gurtin, M.E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983)MathSciNetMATH
34.
Zurück zum Zitat Hackett, R.M.: Hyperelasticity Primer. Springer, Heidelberg (2016) Hackett, R.M.: Hyperelasticity Primer. Springer, Heidelberg (2016)
35.
Zurück zum Zitat Halleux, J.P., Donea, J.: A discussion of Cauchy stress formulations for large strain analysis. In: Bergan, P.G., Bathe, K.J., Wunderlich, W. (eds.) Finite Element Methods for Nonlinear Problems: Europe-US Symposium, pp. 61–74. Springer, Berlin (1986) Halleux, J.P., Donea, J.: A discussion of Cauchy stress formulations for large strain analysis. In: Bergan, P.G., Bathe, K.J., Wunderlich, W. (eds.) Finite Element Methods for Nonlinear Problems: Europe-US Symposium, pp. 61–74. Springer, Berlin (1986)
36.
Zurück zum Zitat Hashiguchi, K.: Elastoplasticity Theory. Springer, Berlin (2009)MATH Hashiguchi, K.: Elastoplasticity Theory. Springer, Berlin (2009)MATH
37.
Zurück zum Zitat Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013) Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013)
38.
Zurück zum Zitat Healy, B.E., Dodds Jr., R.H.: A large strain plasticity model for implicit finite element analyses. Comput. Mech. 9, 95–112 (1992)MATH Healy, B.E., Dodds Jr., R.H.: A large strain plasticity model for implicit finite element analyses. Comput. Mech. 9, 95–112 (1992)MATH
39.
Zurück zum Zitat Hill, R.: A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958)MATH Hill, R.: A general theory of uniqueness and stability in elastic–plastic solids. J. Mech. Phys. Solids 6(3), 236–249 (1958)MATH
40.
Zurück zum Zitat Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7(3), 209–225 (1959)MathSciNetMATH Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7(3), 209–225 (1959)MathSciNetMATH
41.
Zurück zum Zitat Hill, R.: On constitutive inequalities for simple materials – I. J. Mech. Phys. Solids 16(4), 229–242 (1968)MATH Hill, R.: On constitutive inequalities for simple materials – I. J. Mech. Phys. Solids 16(4), 229–242 (1968)MATH
42.
Zurück zum Zitat Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978) Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978)
43.
Zurück zum Zitat Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Egineering. Wiley, Chichester (2000)MATH Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Egineering. Wiley, Chichester (2000)MATH
44.
Zurück zum Zitat Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015)MATH Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015)MATH
45.
Zurück zum Zitat Ji, W., Waas, A.M., Bažant, Z.P.: On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J. Appl. Mech. 80, 041024 (2013) Ji, W., Waas, A.M., Bažant, Z.P.: On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis. J. Appl. Mech. 80, 041024 (2013)
46.
Zurück zum Zitat Johnson, G.C., Bammann, D.J.: A discussion of stress rates in finite deformation problems. Int. J. Solids Struct. 20(8), 725–737 (1984)MATH Johnson, G.C., Bammann, D.J.: A discussion of stress rates in finite deformation problems. Int. J. Solids Struct. 20(8), 725–737 (1984)MATH
47.
Zurück zum Zitat Korobeynikov, S.N.: Nonlinear strain analysis of solids. Sib. Div. Russ. Acad. Sci, Novosibirsk (2000). (in Russian) Korobeynikov, S.N.: Nonlinear strain analysis of solids. Sib. Div. Russ. Acad. Sci, Novosibirsk (2000). (in Russian)
48.
Zurück zum Zitat Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)MathSciNetMATH Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)MathSciNetMATH
49.
Zurück zum Zitat Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011)MATH Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011)MATH
50.
Zurück zum Zitat Korobeinikov, S.N., Reverdatto, V.V., Polyanskii, O.P., Sverdlova, V.G., Babichev, A.V.: Surface topography formation in a region of plate collision: mathematical modeling. J. Appl. Mech. Tech. Phys. 53(4), 577–588 (2012)MATH Korobeinikov, S.N., Reverdatto, V.V., Polyanskii, O.P., Sverdlova, V.G., Babichev, A.V.: Surface topography formation in a region of plate collision: mathematical modeling. J. Appl. Mech. Tech. Phys. 53(4), 577–588 (2012)MATH
51.
Zurück zum Zitat Korobeynikov, S.N., Oleinikov, A.A., Babichev, A.V., Larichkin, A.Y., Alyokhin, V.V.: Computer implementation of Lagrangian formulation of Hencky’s isotropic hyperelastic material constitutive relations. Far East. Math. J. 13(2), 229–249 (2013). (in Russian) Korobeynikov, S.N., Oleinikov, A.A., Babichev, A.V., Larichkin, A.Y., Alyokhin, V.V.: Computer implementation of Lagrangian formulation of Hencky’s isotropic hyperelastic material constitutive relations. Far East. Math. J. 13(2), 229–249 (2013). (in Russian)
52.
Zurück zum Zitat Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018)MathSciNetMATH Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018)MathSciNetMATH
53.
Zurück zum Zitat Korobeynikov, S.N.: Objective symmetrically physical strain tensors, conjugate stress tensors, and Hill’s linear isotropic hyperelastic material models. J. Elast. 136, 159–187 (2019)MathSciNetMATH Korobeynikov, S.N.: Objective symmetrically physical strain tensors, conjugate stress tensors, and Hill’s linear isotropic hyperelastic material models. J. Elast. 136, 159–187 (2019)MathSciNetMATH
54.
Zurück zum Zitat Lehmann, T., Guo, Z.H., Liang, H.: The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A Solids 10(4), 395–404 (1991)MathSciNetMATH Lehmann, T., Guo, Z.H., Liang, H.: The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A Solids 10(4), 395–404 (1991)MathSciNetMATH
55.
Zurück zum Zitat Lin, R.C., Schomburg, U., Kletschkowski, T.: Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur. J. Mech. A Solids 22, 443–461 (2003)MATH Lin, R.C., Schomburg, U., Kletschkowski, T.: Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur. J. Mech. A Solids 22, 443–461 (2003)MATH
56.
Zurück zum Zitat Lin, R.C.: Hypoelasticity-based analytical stress solutions in the simple shearing process. Z. Angew. Math. Mech. 83(3), 163–171 (2003)MathSciNetMATH Lin, R.C.: Hypoelasticity-based analytical stress solutions in the simple shearing process. Z. Angew. Math. Mech. 83(3), 163–171 (2003)MathSciNetMATH
57.
Zurück zum Zitat Liu, C.S., Hong, H.K.: Non-oscillation criteria for hypoelastic models under simple shear deformation. J. Elast. 57, 201–241 (1999)MathSciNetMATH Liu, C.S., Hong, H.K.: Non-oscillation criteria for hypoelastic models under simple shear deformation. J. Elast. 57, 201–241 (1999)MathSciNetMATH
58.
Zurück zum Zitat Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representatin of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990)MATH Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representatin of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990)MATH
59.
Zurück zum Zitat MARC Users Guide: Vol. A. Theory and Users Information. MSC.Software Corporation, Santa Ana (2015) MARC Users Guide: Vol. A. Theory and Users Information. MSC.Software Corporation, Santa Ana (2015)
60.
Zurück zum Zitat Metzger, D.R., Dubey, R.N.: Objective tensor rates and frame indifferent constitutive models. Mech. Res. Commun. 13(2), 91–96 (1986)MathSciNetMATH Metzger, D.R., Dubey, R.N.: Objective tensor rates and frame indifferent constitutive models. Mech. Res. Commun. 13(2), 91–96 (1986)MathSciNetMATH
61.
Zurück zum Zitat Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015)MathSciNetMATH Neff, P., Ghiba, I.D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015)MathSciNetMATH
62.
Zurück zum Zitat Nguyen, N., Waas, A.M.: Nonlinear, finite deformation, finite element analysis. Z. Angew. Math. Phys. 67, 35 (2016)MathSciNetMATH Nguyen, N., Waas, A.M.: Nonlinear, finite deformation, finite element analysis. Z. Angew. Math. Phys. 67, 35 (2016)MathSciNetMATH
63.
Zurück zum Zitat Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)MATH Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)MATH
64.
Zurück zum Zitat Perić, D.: On consistent stress rates in solid mechanics: computational implications. Int. J. Numer. Methods Eng. 33, 799–817 (1992)MATH Perić, D.: On consistent stress rates in solid mechanics: computational implications. Int. J. Numer. Methods Eng. 33, 799–817 (1992)MATH
65.
Zurück zum Zitat Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009)MathSciNetMATH Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009)MathSciNetMATH
66.
Zurück zum Zitat Pinsky, P.M., Ortiz, M., Pister, K.S.: Numerical integration of rate constitutive equations in finite deformation analysis. Comput. Methods Appl. Mech. Eng. 40, 137–158 (1983)MATH Pinsky, P.M., Ortiz, M., Pister, K.S.: Numerical integration of rate constitutive equations in finite deformation analysis. Comput. Methods Appl. Mech. Eng. 40, 137–158 (1983)MATH
67.
Zurück zum Zitat Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Compos. Struct. 84, 1141–1150 (2006) Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Compos. Struct. 84, 1141–1150 (2006)
68.
Zurück zum Zitat Prager, W.: An elementary discussion of definitions of stress rates. Q. Appl. Math. 18, 403–407 (1960)MathSciNetMATH Prager, W.: An elementary discussion of definitions of stress rates. Q. Appl. Math. 18, 403–407 (1960)MathSciNetMATH
69.
Zurück zum Zitat Prager, W.: Einführung in die Kontinuumsmechanik. Birkhäuser, Basel, Stuttgart (1961) [Prager, W.: Introduction to Mechanics of Continua. Dover Publications, Mineola, N.Y. (2004)] Prager, W.: Einführung in die Kontinuumsmechanik. Birkhäuser, Basel, Stuttgart (1961) [Prager, W.: Introduction to Mechanics of Continua. Dover Publications, Mineola, N.Y. (2004)]
70.
Zurück zum Zitat Reinhardt, W.D., Dubey, R.N.: Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Commun. 22(2), 165–170 (1995)MATH Reinhardt, W.D., Dubey, R.N.: Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Commun. 22(2), 165–170 (1995)MATH
71.
Zurück zum Zitat Reinhardt, W.D., Dubey, R.N.: Coordinate-independent representation of spins in continuum mechanics. J. Elast. 42, 133–144 (1996)MathSciNetMATH Reinhardt, W.D., Dubey, R.N.: Coordinate-independent representation of spins in continuum mechanics. J. Elast. 42, 133–144 (1996)MathSciNetMATH
72.
Zurück zum Zitat Reinhardt, W.D., Dubey, R.N.: Application of objective rates in mechanical modeling of solids. J. Appl. Mech. 63(3), 692–698 (1996)MathSciNetMATH Reinhardt, W.D., Dubey, R.N.: Application of objective rates in mechanical modeling of solids. J. Appl. Mech. 63(3), 692–698 (1996)MathSciNetMATH
73.
Zurück zum Zitat Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, N.Y., Berlin, Heidelberg (1998)MATH Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, N.Y., Berlin, Heidelberg (1998)MATH
74.
Zurück zum Zitat Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)MATH Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)MATH
75.
Zurück zum Zitat Sowerby, R., Chu, E.: Rotations, stress rates and strain measures in homogeneous deformation processes. Int. J. Solids Struct. 20, 1037–1048 (1984)MATH Sowerby, R., Chu, E.: Rotations, stress rates and strain measures in homogeneous deformation processes. Int. J. Solids Struct. 20, 1037–1048 (1984)MATH
76.
Zurück zum Zitat Szabó, L., Balla, M.: Comparison of some stress rates. Int. J. Solids Struct. 25(3), 279–297 (1989)MathSciNet Szabó, L., Balla, M.: Comparison of some stress rates. Int. J. Solids Struct. 25(3), 279–297 (1989)MathSciNet
77.
Zurück zum Zitat Thomas, T.Y.: On the structure of the stress–strain relations. PNAS Eng. 41, 716–720 (1955)MathSciNetMATH Thomas, T.Y.: On the structure of the stress–strain relations. PNAS Eng. 41, 716–720 (1955)MathSciNetMATH
78.
Zurück zum Zitat Truesdell, C.: The simplest rate theory of pure elasticity. Commun. Pure Appl. Math. 8, 123–132 (1955)MathSciNetMATH Truesdell, C.: The simplest rate theory of pure elasticity. Commun. Pure Appl. Math. 8, 123–132 (1955)MathSciNetMATH
80.
81.
Zurück zum Zitat Truesdell, C.: Remarks on hypo-elasticity. J. Res. Natl. Bur. Stand. B Math. Math. Phys. 67B, 141–143 (1963)MathSciNetMATH Truesdell, C.: Remarks on hypo-elasticity. J. Res. Natl. Bur. Stand. B Math. Math. Phys. 67B, 141–143 (1963)MathSciNetMATH
82.
Zurück zum Zitat Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, III(1), pp. 226–793. Springer, Berlin (1960) Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, III(1), pp. 226–793. Springer, Berlin (1960)
83.
Zurück zum Zitat Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)
84.
Zurück zum Zitat Trusov, P.V., Shveykin, A.I.: On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites. Physical Mesomechanics 20(4), 377–391 (2017) Trusov, P.V., Shveykin, A.I.: On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites. Physical Mesomechanics 20(4), 377–391 (2017)
85.
Zurück zum Zitat Vorel, J., Bažant, Z.P., Gattu, M.: Elastic soft-core sandwich plates: critical loads and energy errors in commercial codes due to choice of objective stress rate. J. Appl. Mech. 80, 041034 (2013) Vorel, J., Bažant, Z.P., Gattu, M.: Elastic soft-core sandwich plates: critical loads and energy errors in commercial codes due to choice of objective stress rate. J. Appl. Mech. 80, 041034 (2013)
86.
Zurück zum Zitat Vorel, J., Bažant, Z.P.: Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates. Adv. Eng. Softw. 72, 3–7 (2014) Vorel, J., Bažant, Z.P.: Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates. Adv. Eng. Softw. 72, 3–7 (2014)
87.
Zurück zum Zitat Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATH Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATH
88.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)MathSciNetMATH
89.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)MathSciNetMATH
90.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35(30), 4001–4014 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35(30), 4001–4014 (1998)MathSciNetMATH
91.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Strain rates and material spins. J. Elast. 52, 1–41 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Strain rates and material spins. J. Elast. 52, 1–41 (1998)MathSciNetMATH
92.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress. Mech. Res. Commun. 25(1), 59–67 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress. Mech. Res. Commun. 25(1), 59–67 (1998)MathSciNetMATH
93.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998)MathSciNetMATH
94.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)MathSciNetMATH
95.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}{}^{\ast }=\lambda (\text{ tr }\,\mathbf{D})\mathbf{I}+2\mu \mathbf{D}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999) Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}{}^{\ast }=\lambda (\text{ tr }\,\mathbf{D})\mathbf{I}+2\mu \mathbf{D}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)
96.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865–1882 (2000)MathSciNetMATH
97.
Zurück zum Zitat Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002)MATH Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002)MATH
98.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech. 176, 135–151 (2005)MATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech. 176, 135–151 (2005)MATH
99.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, cyclic deformation paths, and residual stress accumulation. ZAMM (Z. Angew. Math. Mech.) 86(11), 843–855 (2006)MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective stress rates, cyclic deformation paths, and residual stress accumulation. ZAMM (Z. Angew. Math. Mech.) 86(11), 843–855 (2006)MathSciNetMATH
100.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)MATH Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)MATH
101.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: The integrability criterion in finite elastoplasticity and its constitutive implications. Acta Mech. 188, 227–244 (2007)MATH Xiao, H., Bruhns, O.T., Meyers, A.: The integrability criterion in finite elastoplasticity and its constitutive implications. Acta Mech. 188, 227–244 (2007)MATH
102.
Zurück zum Zitat Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T.: Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014) Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T.: Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014)
Metadaten
Titel
Analysis of Hooke-like isotropic hypoelasticity models in view of applications in FE formulations
verfasst von
S. N. Korobeynikov
Publikationsdatum
09.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 2/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01611-3

Weitere Artikel der Ausgabe 2/2020

Archive of Applied Mechanics 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.