Skip to main content
Top
Published in: Wireless Personal Communications 4/2020

08-06-2020

Nonlinear Acoustic Echo Canceller to Combat Sigmoid-Type Nonlinearities Under Noisy Environment

Authors: Amit Kumar Kohli, Jashu Sharma

Published in: Wireless Personal Communications | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a nonlinear-acoustic-echo-cancellation (NAEC) technique to tackle sigmoid-type nonlinearities under noisy environment. The nonlinear echo in acoustic systems is inevitable due to the inherent nonlinear characteristics of amplifiers and/or loudspeakers, which deteriorates the quality of speech as well as audio signal reception. Here, the sigmoid-type nonlinearity is modelled by incorporating two control parameters, which determine the shaping- and clipping-parameter values of the saturation curve at a particular room temperature. These control parameters are adjusted by utilizing the variable-step-size (VSS) least-mean-square (LMS) algorithm to enhance the convergence rate and tracking capability of presented NAEC. Furthermore, the impulse response of a room (indoor channel) in the acoustic echo path is modelled as a tap-delay-line finite-impulse-response filter, whose tap-coefficients are estimated by utilizing a modified recursive-least-squares (RLS) algorithm (involving the noise statistics) at the different values of signal-to-noise-ratio (SNR), when correlated as well as uncorrelated input signals are processed. Simulation results demonstrate the efficiency and efficacy of above mentioned adaptive NAEC technique using the VSS-LMS and modified RLS algorithms in terms of the high convergence rate as well as high value of echo-return-loss-enhancement (ERLE) factor. Both the elevating value of shaping-parameter (i.e., increasing nonlinearity level) and the alleviating value of SNR adversely affect the performance of all NAECs. However, the VSS-LMS and modified RLS algorithm based presented adaptive NAEC outperforms the traditional VSS-LMS and normalized-least-mean-square (NLMS) algorithm based NAEC under similar conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nollett, B.S., & Jones D.L. (1997). Nonlinear echo cancellation for hands-free speakerphones. In Proc. IEEE Workshop Nonlinear Signal Image Process. (NSIP), Mackinac Island, MI (pp. 1–5). Nollett, B.S., & Jones D.L. (1997). Nonlinear echo cancellation for hands-free speakerphones. In Proc. IEEE Workshop Nonlinear Signal Image Process. (NSIP), Mackinac Island, MI (pp. 1–5).
2.
go back to reference Fu, J., & Zhu, W.-P. (2008). A nonlinear acoustic echo canceller using sigmoid transform in conjunction with RLS algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(10), 1056–1060.CrossRef Fu, J., & Zhu, W.-P. (2008). A nonlinear acoustic echo canceller using sigmoid transform in conjunction with RLS algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(10), 1056–1060.CrossRef
3.
go back to reference Ahgren, P. (2005). Acoustic echo cancellation and doubletalk detection using estimated loudspeaker impulse. IEEE Transactions on Speech and Audio Processing, 13(6), 1231–1237.CrossRef Ahgren, P. (2005). Acoustic echo cancellation and doubletalk detection using estimated loudspeaker impulse. IEEE Transactions on Speech and Audio Processing, 13(6), 1231–1237.CrossRef
4.
go back to reference Costa, J.-P., Lagrange, A., Arliaud, A. (2003). Acoustic echo cancellation using nonlinear cascade filters. In Proc. ICASSP, vol. 5, Hong Kong, China (pp. 389–392). Costa, J.-P., Lagrange, A., Arliaud, A. (2003). Acoustic echo cancellation using nonlinear cascade filters. In Proc. ICASSP, vol. 5, Hong Kong, China (pp. 389–392).
5.
go back to reference Guerin, A., Faucon, G., & Bouquin-Jeannes, R. L. (2003). Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Transactions on Speech and Audio Processing, 11(6), 672–683.CrossRef Guerin, A., Faucon, G., & Bouquin-Jeannes, R. L. (2003). Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Transactions on Speech and Audio Processing, 11(6), 672–683.CrossRef
6.
go back to reference Kuech, F., & Kellermann, W. (2004). Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Transactions on Signal Processing, 53(2), 564–575.MathSciNetMATHCrossRef Kuech, F., & Kellermann, W. (2004). Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Transactions on Signal Processing, 53(2), 564–575.MathSciNetMATHCrossRef
7.
go back to reference Kuech, F., Mitnacht, A., Kellermann, W. (2005). Nonlinear acoustic echo cancellation using adaptive orthogonalized power filters. In Proc. IEEE ICASSP, vol. 3, Philadelphia, PA (pp. 105–108). Kuech, F., Mitnacht, A., Kellermann, W. (2005). Nonlinear acoustic echo cancellation using adaptive orthogonalized power filters. In Proc. IEEE ICASSP, vol. 3, Philadelphia, PA (pp. 105–108).
8.
go back to reference Panicker, T. M., & Mathews, V. J. (1998). Parallel-cascade realizations and approximations of truncated Volterra systems. IEEE Transactions on Signal Processing, 46(10), 2829–2832.CrossRef Panicker, T. M., & Mathews, V. J. (1998). Parallel-cascade realizations and approximations of truncated Volterra systems. IEEE Transactions on Signal Processing, 46(10), 2829–2832.CrossRef
9.
go back to reference Sentoni, G., & Altenberg, A. (2005). Nonlinear acoustic echo canceller with DABNET + FIR structure. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA (pp. 37–40). Sentoni, G., & Altenberg, A. (2005). Nonlinear acoustic echo canceller with DABNET + FIR structure. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA (pp. 37–40).
10.
go back to reference Stenger, A., Trautmann, L., Rabenstein, R. (1999). Nonlinear acoustic echo cancellation with 2nd order adaptive Volterra filters. In Proc. IEEE ICASSP, vol. 2, Phoenix, USA (pp. 877–880). Stenger, A., Trautmann, L., Rabenstein, R. (1999). Nonlinear acoustic echo cancellation with 2nd order adaptive Volterra filters. In Proc. IEEE ICASSP, vol. 2, Phoenix, USA (pp. 877–880).
11.
go back to reference Stenger, A., & Rabenstein, R. (1999). Adaptation of acoustic echo cancellers incorporation a memoryless nonlinearity. In Proc. IEEE IWAENC, Pocono Manor, PA (pp. 168 – 171). Stenger, A., & Rabenstein, R. (1999). Adaptation of acoustic echo cancellers incorporation a memoryless nonlinearity. In Proc. IEEE IWAENC, Pocono Manor, PA (pp. 168 – 171).
12.
go back to reference Stenger, A., & Kellermann, W. (2000). Nonlinear acoustic echo cancellation with fast converging memoryless pre-processor. In Proc. International Conference on Acoustics, Speech, and Signal Processing. (ICASSP), vol. 2, Istanbul, Turkey (pp. II805–II808). Stenger, A., & Kellermann, W. (2000). Nonlinear acoustic echo cancellation with fast converging memoryless pre-processor. In Proc. International Conference on Acoustics, Speech, and Signal Processing. (ICASSP), vol. 2, Istanbul, Turkey (pp. II805–II808).
13.
go back to reference Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, L. A., Garcia, J. A., & Uncini, A. (2013). Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Transactions on Audio, Speech and Language Processing, 21(7), 1502–1512.CrossRef Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, L. A., Garcia, J. A., & Uncini, A. (2013). Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Transactions on Audio, Speech and Language Processing, 21(7), 1502–1512.CrossRef
14.
go back to reference Vaerenbergh, S.V., & Azpicueta-Ruiz, L.A. (2014). Kernel-based identification of Hammerstein systems for nonlinear acoustic echo cancellation. In Proc. IEEE ICASSP, vol. 1, Florence, Italy (pp. 3739–3743). Vaerenbergh, S.V., & Azpicueta-Ruiz, L.A. (2014). Kernel-based identification of Hammerstein systems for nonlinear acoustic echo cancellation. In Proc. IEEE ICASSP, vol. 1, Florence, Italy (pp. 3739–3743).
15.
go back to reference Rai, A., & Kohli, A. K. (2015). Volterra filtering scheme using generalized variable step-size NLMS algorithm for nonlinear acoustic echo cancellation. Acta Acustica United with Acustica, 101(4), 821–828.CrossRef Rai, A., & Kohli, A. K. (2015). Volterra filtering scheme using generalized variable step-size NLMS algorithm for nonlinear acoustic echo cancellation. Acta Acustica United with Acustica, 101(4), 821–828.CrossRef
16.
go back to reference Rai, A., & Kohli, A. K. (2014). Adaptive polynomial filtering using generalized variable step-size pth power (LMP) algorithm. Circuits, Systems and Signal Processing, 33(12), 3931–3947.CrossRef Rai, A., & Kohli, A. K. (2014). Adaptive polynomial filtering using generalized variable step-size pth power (LMP) algorithm. Circuits, Systems and Signal Processing, 33(12), 3931–3947.CrossRef
17.
go back to reference Hamidia, M., & Amrouche A. (2019). Improving acoustic echo cancellation in hands-free communication systems. In Proc. ISPA, vol. 1, Mostaganem, Algeria (pp. 1–5). Hamidia, M., & Amrouche A. (2019). Improving acoustic echo cancellation in hands-free communication systems. In Proc. ISPA, vol. 1, Mostaganem, Algeria (pp. 1–5).
18.
go back to reference Dai, H., & Zhu, W.-P. (2006). Compensation of loudspeaker nonlinearity in acoustic echo cancellation using raised-cosine function. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1190–1194.CrossRef Dai, H., & Zhu, W.-P. (2006). Compensation of loudspeaker nonlinearity in acoustic echo cancellation using raised-cosine function. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1190–1194.CrossRef
19.
go back to reference Breining, C., Dreiscitel, P., Hansler, E., Mader, A., Nitsch, B., Puder, H., et al. (1999). Acoustic echo control: an application of very-high-order adaptive filters. IEEE Signal Processing Magazine, 16(4), 42–69.CrossRef Breining, C., Dreiscitel, P., Hansler, E., Mader, A., Nitsch, B., Puder, H., et al. (1999). Acoustic echo control: an application of very-high-order adaptive filters. IEEE Signal Processing Magazine, 16(4), 42–69.CrossRef
20.
go back to reference Paleologu, C., Ciochina, S., & Benesty, J. (2008). Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Processing Letters, 15, 5–8.CrossRef Paleologu, C., Ciochina, S., & Benesty, J. (2008). Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Processing Letters, 15, 5–8.CrossRef
21.
go back to reference Kohli, A. K., & Mehra, D. K. (2006). Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Transactions on Signal Processing, 54(7), 2606–2615.MATHCrossRef Kohli, A. K., & Mehra, D. K. (2006). Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Transactions on Signal Processing, 54(7), 2606–2615.MATHCrossRef
22.
go back to reference Garg, H. K., & Kohli, A. K. (2017). Excision of ocular artifacts from EEG using NVFF-RLS adaptive algorithm. Circuits, Systems and Signal Processing, 36(1), 404–419.MATHCrossRef Garg, H. K., & Kohli, A. K. (2017). Excision of ocular artifacts from EEG using NVFF-RLS adaptive algorithm. Circuits, Systems and Signal Processing, 36(1), 404–419.MATHCrossRef
23.
go back to reference Diniz, P. S. R. (2002). Adaptive filtering (2nd ed.). Norwell: Kluwer.MATH Diniz, P. S. R. (2002). Adaptive filtering (2nd ed.). Norwell: Kluwer.MATH
24.
go back to reference Lee, K., Baek, Y., & Park, Y. (2015). Nonlinear acoustic echo cancellation using a nonlinear postprocessor with a linearly constrained affine projection algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 881–885.CrossRef Lee, K., Baek, Y., & Park, Y. (2015). Nonlinear acoustic echo cancellation using a nonlinear postprocessor with a linearly constrained affine projection algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 881–885.CrossRef
25.
go back to reference Kuhn, E. V., Kolodziej, J. E., & Seara, R. (2014). Stochastic modeling of the NLMS algorithm for complex Gaussian input data and nonstationary environment. Digital Signal Processing, 30, 55–66.MathSciNetCrossRef Kuhn, E. V., Kolodziej, J. E., & Seara, R. (2014). Stochastic modeling of the NLMS algorithm for complex Gaussian input data and nonstationary environment. Digital Signal Processing, 30, 55–66.MathSciNetCrossRef
26.
go back to reference Elko, G.W., Diethorn, E., Gansler, T. (2003). Room impulse response variation due to thermal fluctuation and its impact on acoustic echo cancellation. In Proc. IEEE IWAENC, Kyoto, Japan (pp. 67–70). Elko, G.W., Diethorn, E., Gansler, T. (2003). Room impulse response variation due to thermal fluctuation and its impact on acoustic echo cancellation. In Proc. IEEE IWAENC, Kyoto, Japan (pp. 67–70).
27.
go back to reference Haykin, S. (1999). Neural networks (2nd ed.). Prentice-Hall: Pearson Education.MATH Haykin, S. (1999). Neural networks (2nd ed.). Prentice-Hall: Pearson Education.MATH
28.
go back to reference Aboulnasr, T., & Mayyas, K. (1997). A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Transactions on Signal Processing, 45(3), 631–639.CrossRef Aboulnasr, T., & Mayyas, K. (1997). A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Transactions on Signal Processing, 45(3), 631–639.CrossRef
29.
go back to reference Haykin, S. (1996). Adaptive filter theory (3rd ed.). Prentice-Hall: Englewood Cliffs.MATH Haykin, S. (1996). Adaptive filter theory (3rd ed.). Prentice-Hall: Englewood Cliffs.MATH
30.
go back to reference Kwong, R. H., & Johnston, E. W. (1992). A variable step size LMS algorithm. IEEE Transactions on Signal Processing, 40(7), 1633–1642.MATHCrossRef Kwong, R. H., & Johnston, E. W. (1992). A variable step size LMS algorithm. IEEE Transactions on Signal Processing, 40(7), 1633–1642.MATHCrossRef
31.
go back to reference Kohli, A. K., Rai, A., & Patel, M. K. (2011). Variable forgetting factor LS algorithm for polynomial channel model. ISRN Signal Processing, 915259, 1–4.MATHCrossRef Kohli, A. K., Rai, A., & Patel, M. K. (2011). Variable forgetting factor LS algorithm for polynomial channel model. ISRN Signal Processing, 915259, 1–4.MATHCrossRef
32.
go back to reference Kohli, A. K., & Rai, A. (2013). Numeric variable forgetting factor RLS algorithm for second-order Volterra filtering. Circuits, System and Signal Processing, 32(1), 223–232.MathSciNetCrossRef Kohli, A. K., & Rai, A. (2013). Numeric variable forgetting factor RLS algorithm for second-order Volterra filtering. Circuits, System and Signal Processing, 32(1), 223–232.MathSciNetCrossRef
33.
go back to reference Zhang, H., Tan, K., Wang, D. (2019). Deep learning for joint acoustic echo and noise cancellation with nonlinear distortions. In Proc. INTERSPEECH, vol. 1, Graz, Austria (pp. 15–19). Zhang, H., Tan, K., Wang, D. (2019). Deep learning for joint acoustic echo and noise cancellation with nonlinear distortions. In Proc. INTERSPEECH, vol. 1, Graz, Austria (pp. 15–19).
34.
go back to reference Widrow, B., McCool, J. M., Larimore, M. G., & Johnson, C. R. (1976). Stationary and nonstationary learning characteristics of LMS adaptive filter. Proceedings of the IEEE, 64(8), 1151–1162.MathSciNetCrossRef Widrow, B., McCool, J. M., Larimore, M. G., & Johnson, C. R. (1976). Stationary and nonstationary learning characteristics of LMS adaptive filter. Proceedings of the IEEE, 64(8), 1151–1162.MathSciNetCrossRef
35.
go back to reference Song, S., Lim, J. S., Baek, S. J., & Sung, K. M. (2002). Variable forgetting factor linear least squares algorithm for frequency selective fading channel estimation. IEEE Transactions on Vehicular Technology, 51(3), 613–616.CrossRef Song, S., Lim, J. S., Baek, S. J., & Sung, K. M. (2002). Variable forgetting factor linear least squares algorithm for frequency selective fading channel estimation. IEEE Transactions on Vehicular Technology, 51(3), 613–616.CrossRef
36.
go back to reference Sunitha, T., & Malar, R. S. M. (2018). Nonlinear acoustic echo cancellation based on multichannel adaptive filters: a novel approach. Wireless Personal Communications, 102(4), 3269–3284.CrossRef Sunitha, T., & Malar, R. S. M. (2018). Nonlinear acoustic echo cancellation based on multichannel adaptive filters: a novel approach. Wireless Personal Communications, 102(4), 3269–3284.CrossRef
37.
go back to reference Papoulis, A. (1991). Probability random variables and stochastic processes (3rd ed.). New York: McGraw-Hill.MATH Papoulis, A. (1991). Probability random variables and stochastic processes (3rd ed.). New York: McGraw-Hill.MATH
38.
go back to reference Kapoor, D. S., & Kohli, A. K. (2015). Simulation of basis expansion model for channel fading using AR1 process. Wireless Personal Communications, 85(3), 791–798.CrossRef Kapoor, D. S., & Kohli, A. K. (2015). Simulation of basis expansion model for channel fading using AR1 process. Wireless Personal Communications, 85(3), 791–798.CrossRef
39.
go back to reference Singh, S., & Kohli, A. K. (2014). Wireless fading paradigm for antenna array receiver for a disk-type cluster of scatterers. Circuits, Systems and Signal Processing, 33(4), 1231–1244.CrossRef Singh, S., & Kohli, A. K. (2014). Wireless fading paradigm for antenna array receiver for a disk-type cluster of scatterers. Circuits, Systems and Signal Processing, 33(4), 1231–1244.CrossRef
40.
go back to reference Sukhumalwong, S., & Benjangkaprasert, C. (2006). Adaptive echo cancellation using variable step-size algorithm lattice filters. In Proceeding of IEEE TENCON Region 10 Conference, Hong Kong, China (pp. 1–4). Sukhumalwong, S., & Benjangkaprasert, C. (2006). Adaptive echo cancellation using variable step-size algorithm lattice filters. In Proceeding of IEEE TENCON Region 10 Conference, Hong Kong, China (pp. 1–4).
41.
go back to reference Kapoor, D. S., & Kohli, A. K. (2018). Channel estimation and long-range prediction of fast fading channels for adaptive OFDM system. International Journal of Electronics, 105(9), 1451–1466.CrossRef Kapoor, D. S., & Kohli, A. K. (2018). Channel estimation and long-range prediction of fast fading channels for adaptive OFDM system. International Journal of Electronics, 105(9), 1451–1466.CrossRef
42.
go back to reference Halimeh, M. M., Huemmer, C., & Kellermann, W. (2019). A neural network-based nonlinear acoustic echo canceller. IEEE Signal Processing Letters, 26(12), 1827–1831.CrossRef Halimeh, M. M., Huemmer, C., & Kellermann, W. (2019). A neural network-based nonlinear acoustic echo canceller. IEEE Signal Processing Letters, 26(12), 1827–1831.CrossRef
Metadata
Title
Nonlinear Acoustic Echo Canceller to Combat Sigmoid-Type Nonlinearities Under Noisy Environment
Authors
Amit Kumar Kohli
Jashu Sharma
Publication date
08-06-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07544-3

Other articles of this Issue 4/2020

Wireless Personal Communications 4/2020 Go to the issue