Skip to main content
Top
Published in: Meccanica 4-5/2017

11-05-2016

Nonlocal modeling for dynamic stability of spinning nanotube under axial load

Authors: Sh. Hosseini-Hashemi, M. R. Ilkhani

Published in: Meccanica | Issue 4-5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spinning nanotubes are the main part of different high precision nano-machines such as nano sensors, nano motors, and nano pumps. Nanotubes experience various types of loads in such devices. In this paper, different type of instability for a spinning nanotube under tangential load is investigated. For this purpose, Euler and Timoshenko nonlocal beam theory is used. Equations of motion are obtained by applying Hamilton’s principle on the energy terms of nanotube by considering rotational velocity and compressive tangential load. Numerical results are exactly calculated for different parameters and are checked by comparing them with literature. Results show that there are two type of instability for simply supported spinning nanotubes as divergent and flutter, generally. Also, effects of different nonlocal parameter, geometry and rotational speed on these instabilities are investigated, comprehensively. It is approved that nonlocal parameter has significant effect on both of the instabilities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fennimore A, Yuzvinsky T, Han W-Q, Fuhrer M, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410ADSCrossRef Fennimore A, Yuzvinsky T, Han W-Q, Fuhrer M, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410ADSCrossRef
2.
go back to reference Han J, Globus A, Jaffe R, Deardorff G (1997) Molecular dynamics simulations of carbon nanotube-based gears. Nanotechnology 8(3):95ADSCrossRef Han J, Globus A, Jaffe R, Deardorff G (1997) Molecular dynamics simulations of carbon nanotube-based gears. Nanotechnology 8(3):95ADSCrossRef
3.
go back to reference Lohrasebi A, Rafii-Tabar H (2008) Computational modeling of an ion-driven nanomotor. J Mol Graph Modell 27(2):116–123CrossRef Lohrasebi A, Rafii-Tabar H (2008) Computational modeling of an ion-driven nanomotor. J Mol Graph Modell 27(2):116–123CrossRef
4.
go back to reference Takagi Y, Uda T, Ohno T (2008) Carbon nanotube motors driven by carbon nanotube. J Chem Phys 128(19):194704ADSCrossRef Takagi Y, Uda T, Ohno T (2008) Carbon nanotube motors driven by carbon nanotube. J Chem Phys 128(19):194704ADSCrossRef
5.
go back to reference Tu Z, Hu X (2005) Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage. Phys Rev B 72(3):033404ADSCrossRef Tu Z, Hu X (2005) Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage. Phys Rev B 72(3):033404ADSCrossRef
6.
go back to reference Lohrasebi A, Jamali Y (2011) Computational modeling of a rotary nanopump. J Mol Graph Modell 29(8):1025–1029CrossRef Lohrasebi A, Jamali Y (2011) Computational modeling of a rotary nanopump. J Mol Graph Modell 29(8):1025–1029CrossRef
7.
go back to reference Cook EH, Buehler MJ, Spakovszky ZS (2013) Mechanism of friction in rotating carbon nanotube bearings. J Mech Phys Solids 61(2):652–673ADSCrossRef Cook EH, Buehler MJ, Spakovszky ZS (2013) Mechanism of friction in rotating carbon nanotube bearings. J Mech Phys Solids 61(2):652–673ADSCrossRef
8.
go back to reference Zhang S, Liu WK, Ruoff RS (2004) Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Lett 4(2):293–297ADSCrossRef Zhang S, Liu WK, Ruoff RS (2004) Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Lett 4(2):293–297ADSCrossRef
10.
go back to reference Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 73(8):085410ADSCrossRef Sears A, Batra RC (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 73(8):085410ADSCrossRef
14.
go back to reference Torabi H, Shariati M, Sedaghat E, Zadeh A (2013) Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48(8):1959–1974. doi:10.1007/s11012-013-9715-x CrossRefMATH Torabi H, Shariati M, Sedaghat E, Zadeh A (2013) Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48(8):1959–1974. doi:10.​1007/​s11012-013-9715-x CrossRefMATH
17.
go back to reference Rafiee R, Moghadam RM (2014) On the modeling of carbon nanotubes: a critical review. Compos Part B 56:435–449CrossRef Rafiee R, Moghadam RM (2014) On the modeling of carbon nanotubes: a critical review. Compos Part B 56:435–449CrossRef
22.
go back to reference Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH
23.
go back to reference Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743CrossRefMATH Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743CrossRefMATH
24.
go back to reference Yakobson BI, Brabec C, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514ADSCrossRef Yakobson BI, Brabec C, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514ADSCrossRef
25.
go back to reference Xin Z, Jianjun Z, Zhong-Can O-Y (2000) Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B 62(20):13692ADSCrossRef Xin Z, Jianjun Z, Zhong-Can O-Y (2000) Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B 62(20):13692ADSCrossRef
26.
go back to reference Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880CrossRef
27.
go back to reference Kudin KN, Scuseria GE, Yakobson BI (2001) C 2 F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64(23):235406ADSCrossRef Kudin KN, Scuseria GE, Yakobson BI (2001) C 2 F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64(23):235406ADSCrossRef
28.
go back to reference Zhang P, Huang Y, Geubelle P, Klein P, Hwang K (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39(13):3893–3906CrossRefMATH Zhang P, Huang Y, Geubelle P, Klein P, Hwang K (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39(13):3893–3906CrossRefMATH
29.
go back to reference Jin Y, Yuan F (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos Sci Technol 63(11):1507–1515CrossRef Jin Y, Yuan F (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos Sci Technol 63(11):1507–1515CrossRef
30.
go back to reference Vodenitcharova T, Zhang L (2003) Effective wall thickness of a single-walled carbon nanotube. Phys Rev B 68(16):165401ADSCrossRef Vodenitcharova T, Zhang L (2003) Effective wall thickness of a single-walled carbon nanotube. Phys Rev B 68(16):165401ADSCrossRef
31.
go back to reference Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B 69(11):115415ADSCrossRef Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B 69(11):115415ADSCrossRef
32.
go back to reference Sears A, Batra R (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69(23):235406ADSCrossRef Sears A, Batra R (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69(23):235406ADSCrossRef
33.
go back to reference Wang L, Zheng Q, Liu JZ, Jiang Q (2005) Size dependence of the thin-shell model for carbon nanotubes. Phys Rev Lett 95(10):105501ADSCrossRef Wang L, Zheng Q, Liu JZ, Jiang Q (2005) Size dependence of the thin-shell model for carbon nanotubes. Phys Rev Lett 95(10):105501ADSCrossRef
35.
go back to reference Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45(1):43–51CrossRefMATH Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45(1):43–51CrossRefMATH
36.
go back to reference Sudak L (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94(11):7281–7287ADSCrossRef Sudak L (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94(11):7281–7287ADSCrossRef
38.
go back to reference Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2):288–307CrossRefMATH Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2):288–307CrossRefMATH
44.
go back to reference Murmu T, Adhikari S (2010) Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation. J Appl Phys 108(12):123507ADSCrossRef Murmu T, Adhikari S (2010) Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation. J Appl Phys 108(12):123507ADSCrossRef
45.
go back to reference Pradhan S, Murmu T (2010) Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys E 42(7):1944–1949CrossRef Pradhan S, Murmu T (2010) Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys E 42(7):1944–1949CrossRef
46.
go back to reference Narendar S (2012) Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia. Appl Math Comput 219(3):1232–1243MathSciNetMATH Narendar S (2012) Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia. Appl Math Comput 219(3):1232–1243MathSciNetMATH
47.
go back to reference Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94(9):2990–3001CrossRef Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94(9):2990–3001CrossRef
48.
go back to reference Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710ADSCrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710ADSCrossRef
50.
go back to reference Liu JZ, Zheng Q, Jiang Q (2001) Effect of a rippling mode on resonances of carbon nanotubes. Phys Rev Lett 86(21):4843–4846ADSCrossRef Liu JZ, Zheng Q, Jiang Q (2001) Effect of a rippling mode on resonances of carbon nanotubes. Phys Rev Lett 86(21):4843–4846ADSCrossRef
51.
go back to reference Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi C, Tang M, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405(6788):769–772ADSCrossRef Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi C, Tang M, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405(6788):769–772ADSCrossRef
53.
go back to reference Zhang Y, Wang C, Tan V (2006) Buckling of multiwalled carbon nanotubes using Timoshenko beam theory. J Eng Mech 132(9):952–958CrossRef Zhang Y, Wang C, Tan V (2006) Buckling of multiwalled carbon nanotubes using Timoshenko beam theory. J Eng Mech 132(9):952–958CrossRef
54.
go back to reference Choi S, Pierre C, Ulsoy A (1992) Consistent modeling of rotating Timoshenko shafts subject to axial loads. J Vib Acoust 114(2):249–259CrossRef Choi S, Pierre C, Ulsoy A (1992) Consistent modeling of rotating Timoshenko shafts subject to axial loads. J Vib Acoust 114(2):249–259CrossRef
55.
go back to reference Lu P (2007) Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory. J Appl Phys 101(7):073504ADSCrossRef Lu P (2007) Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory. J Appl Phys 101(7):073504ADSCrossRef
Metadata
Title
Nonlocal modeling for dynamic stability of spinning nanotube under axial load
Authors
Sh. Hosseini-Hashemi
M. R. Ilkhani
Publication date
11-05-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 4-5/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0441-z

Other articles of this Issue 4-5/2017

Meccanica 4-5/2017 Go to the issue

Premium Partners