Skip to main content
Top
Published in: Meccanica 4-5/2017

12-04-2016

FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field

Authors: Ö. Türk, M. Tezer-Sezgin

Published in: Meccanica | Issue 4-5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide (\(\hbox {Al}_{2} \hbox {O}_{3}\))–water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the implicit backward difference scheme is used in time direction. The results are obtained for Rayleigh (Ra), Hartmann (Ha) numbers, and nanoparticles volume fractions (\(\phi\)), in the ranges of \(10^3 \le Ra \le 10^7\), \(0\le Ha \le 500\) and \(0 \le \phi \le 0.2\), respectively. The streamlines and microrotation contours are observed to show similar behaviors with altering magnitudes. For low Ra values, when \(Ha=0\), symmetric vortices near the walls and a central vortex in opposite direction are observed in vorticity. As Ra increases, the central vortex splits into two due to the circulation in the effect of the buoyant flow. Boundary layer formation is observed when Ha increases for almost all Rayleigh numbers in both streamlines and vorticity. The isotherms have horizontal profiles for high Ra values owing to convective dominance over conduction. As Ha is increased, the convection effect is reduced, and isotherms tend to have vertical profiles. This study presents the first FEM application for solving highly nonlinear PDEs defining micropolar nanofluid flow especially for large values of Rayleigh and Hartmann numbers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bourantas G, Loukopoulos V (2014) MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int J Heat Mass Transf 79:930–944CrossRef Bourantas G, Loukopoulos V (2014) MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int J Heat Mass Transf 79:930–944CrossRef
2.
go back to reference Bourantas G, Loukopoulos V (2014) Modeling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf 68:35–41CrossRef Bourantas G, Loukopoulos V (2014) Modeling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf 68:35–41CrossRef
3.
go back to reference Ece MC, Büyük E (2007) Natural convection flow under a magnetic field in an inclined square enclosure differentialy heated on adjacent walls. Meccanica 42:435–449CrossRefMATH Ece MC, Büyük E (2007) Natural convection flow under a magnetic field in an inclined square enclosure differentialy heated on adjacent walls. Meccanica 42:435–449CrossRefMATH
5.
go back to reference Ghasemi B, Aminossadati S, Raisi A (2011) Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci 50:1748–1756CrossRef Ghasemi B, Aminossadati S, Raisi A (2011) Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci 50:1748–1756CrossRef
6.
go back to reference Gümgüm S, Tezer-Sezgin M (2010) DRBEM solution of natural convection flow of nanofluids with a heat source. Eng Anal Boundary Elem 34:727–737MathSciNetCrossRefMATH Gümgüm S, Tezer-Sezgin M (2010) DRBEM solution of natural convection flow of nanofluids with a heat source. Eng Anal Boundary Elem 34:727–737MathSciNetCrossRefMATH
7.
go back to reference Haq RU, Nadeem S, Akbar NS, Khan ZH (2015) Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans Nanotechnol 14(1):42–50ADSCrossRef Haq RU, Nadeem S, Akbar NS, Khan ZH (2015) Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans Nanotechnol 14(1):42–50ADSCrossRef
8.
go back to reference Hussain ST, Nadeem S, Ul Haq R (2014) Model-based analysis of micropolar nanofluid flow over a stretching surface. Eur Phys J Plus 129(8):161CrossRef Hussain ST, Nadeem S, Ul Haq R (2014) Model-based analysis of micropolar nanofluid flow over a stretching surface. Eur Phys J Plus 129(8):161CrossRef
9.
go back to reference Jena SK, Bhattacharyya S (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. Int J Eng Sci 24(1):69–78MathSciNetCrossRefMATH Jena SK, Bhattacharyya S (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. Int J Eng Sci 24(1):69–78MathSciNetCrossRefMATH
10.
go back to reference Nadeem S, Mehmood R, Akbar NS (2014) Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. Eur Phys J Plus 129(182):1–17 Nadeem S, Mehmood R, Akbar NS (2014) Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. Eur Phys J Plus 129(182):1–17
11.
go back to reference Nadeem S, Mehmood R, Akbar NS (2015) Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface. J Magn Magn Mater 378:457–462ADSCrossRef Nadeem S, Mehmood R, Akbar NS (2015) Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface. J Magn Magn Mater 378:457–462ADSCrossRef
12.
go back to reference Nadeem S, Mehmood R, Motsa S (2015) Numerical investigation on MHD oblique flow of Walter’s B type nano fluid over a convective surface. Int J Therm Sci 92:162–172CrossRef Nadeem S, Mehmood R, Motsa S (2015) Numerical investigation on MHD oblique flow of Walter’s B type nano fluid over a convective surface. Int J Therm Sci 92:162–172CrossRef
13.
go back to reference Oztop HF, Oztop M, Varol Y (2009) Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun Nonlinear Sci Numer Simul 14:770–778ADSCrossRefMATH Oztop HF, Oztop M, Varol Y (2009) Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun Nonlinear Sci Numer Simul 14:770–778ADSCrossRefMATH
14.
go back to reference Reddy JN (2006) An introduction to the finite element method. McGraw-Hill, New York Reddy JN (2006) An introduction to the finite element method. McGraw-Hill, New York
15.
go back to reference Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410CrossRef Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410CrossRef
16.
go back to reference Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43ADSCrossRef Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43ADSCrossRef
17.
go back to reference Türk Ö, Tezer-Sezgin M (2013) Fem solution of natural convection flow in square enclosures under magnetic field. Int J Numer Methods Heat Fluid Flow 23(5):844–866MathSciNetCrossRef Türk Ö, Tezer-Sezgin M (2013) Fem solution of natural convection flow in square enclosures under magnetic field. Int J Numer Methods Heat Fluid Flow 23(5):844–866MathSciNetCrossRef
18.
go back to reference Wong KFV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19(34):345702ADSCrossRef Wong KFV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19(34):345702ADSCrossRef
19.
go back to reference Zadravec M, Hribersek M, Skerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal Boundary Elem 33(4):485–492MathSciNetCrossRefMATH Zadravec M, Hribersek M, Skerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal Boundary Elem 33(4):485–492MathSciNetCrossRefMATH
Metadata
Title
FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field
Authors
Ö. Türk
M. Tezer-Sezgin
Publication date
12-04-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 4-5/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0431-1

Other articles of this Issue 4-5/2017

Meccanica 4-5/2017 Go to the issue

Premium Partners