Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

23-10-2020

Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance

Authors: Sherif Elbasuney, Gharieb S. El-Sayyad, M. Yehia, M. Gaber Zaky, M. Abd Elkodous

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current study highlights a sustainable fabrication of nanoscopic thermite (MnO2/Al) system, composed of MnO2 nanoparticles with an average particle size of about 20.8 nm prepared by a hydrothermal processing technique. In addition, it contains aluminium particles having a combustion heat of 32,000 J/g, which is very attractive for advanced energetic systems. Plate-like aluminium nanoparticles with an average particle size of 100 nm were developed by wet milling. Our results revealed aluminium optimum solid loading in tri-nitrotoulene (TNT), which was found to be 8.0 wt%. At this optimum solid loading level, aluminium nanoparticles increased the destructive effect of TNT by 25.0%. While, stoichiometric colloidal mixture of both MnO2 and Al nanoparticles exhibited a 65.0% increase in the destructive effect of TNT. Our work presents an intimate mixing between nano-thermite particles, where particle size and inter-particles’ distance are at the nanoscale. To sum up, TNT detonation wave was supported with one of the most potent thermite reactions occurring with maximum rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H. Ritter, S. Braun, High explosives containing ultrafine aluminum ALEX. Propellants Explos. Pyrotech. 26(6), 311–314 (2001) H. Ritter, S. Braun, High explosives containing ultrafine aluminum ALEX. Propellants Explos. Pyrotech. 26(6), 311–314 (2001)
2.
go back to reference N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37(2), 143–155 (2012) N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37(2), 143–155 (2012)
3.
go back to reference R.C. Doty et al., Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 17(18), 4630–4635 (2005) R.C. Doty et al., Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 17(18), 4630–4635 (2005)
4.
go back to reference V.E. Zarko, A.A. Gromov, Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016) V.E. Zarko, A.A. Gromov, Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)
5.
go back to reference P.P. Vadhe et al., Cast aluminized explosives (review). Combust Explos Shock Waves 44(4), 461–477 (2008) P.P. Vadhe et al., Cast aluminized explosives (review). Combust Explos Shock Waves 44(4), 461–477 (2008)
6.
go back to reference J. Conkling, C. Mocella, Chemistry of Pyrotechnics Basic Principles and Theory, Second. (CRC, London, 2012) J. Conkling, C. Mocella, Chemistry of Pyrotechnics Basic Principles and Theory, Second. (CRC, London, 2012)
7.
go back to reference M.L. Chan et al., Castable thermobaric explosive formulations. 2005, The United State of America Repredented by The Secretary of The Navy: United States. p. 5 M.L. Chan et al., Castable thermobaric explosive formulations. 2005, The United State of America Repredented by The Secretary of The Navy: United States. p. 5
8.
go back to reference W.A. Trzciński, L. Maiz, Thermobaric and enhanced blast explosives—properties and testing methods. Propellants Explos. Pyrotech. 40, 632 (2015) W.A. Trzciński, L. Maiz, Thermobaric and enhanced blast explosives—properties and testing methods. Propellants Explos. Pyrotech. 40, 632 (2015)
9.
go back to reference L. Shen et al., Preparation and characterization of Al/B/Fe2O3 nanothermites. Sci. China Chem. 57(6), 797–802 (2014) L. Shen et al., Preparation and characterization of Al/B/Fe2O3 nanothermites. Sci. China Chem. 57(6), 797–802 (2014)
10.
go back to reference S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28(5), 1793–1800 (2018) S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28(5), 1793–1800 (2018)
11.
go back to reference B.Q. Lin et al., Experimental investigation on explosion characteristics of nano-aluminum powder—air mixtures. Combust. Explos. Shock Waves 46(6), 678–682 (2010) B.Q. Lin et al., Experimental investigation on explosion characteristics of nano-aluminum powder—air mixtures. Combust. Explos. Shock Waves 46(6), 678–682 (2010)
12.
go back to reference P. Brousseau, C.J. Anderson, Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 27(5), 300–306 (2002) P. Brousseau, C.J. Anderson, Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 27(5), 300–306 (2002)
13.
go back to reference E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009) E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)
14.
go back to reference H.J. Krier, J.M. Peuker, N. Glumac, Aluminum combustion in aluminized explosives: aerobic and anaerobic reaction, in 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition Orlando, Florida (2011) H.J. Krier, J.M. Peuker, N. Glumac, Aluminum combustion in aluminized explosives: aerobic and anaerobic reaction, in 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition Orlando, Florida (2011)
15.
go back to reference A.K. Mohamed, H.E. Mostafa, S. Elbasuney, Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation. J. Hazard. Mater. 301, 492–503 (2016) A.K. Mohamed, H.E. Mostafa, S. Elbasuney, Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation. J. Hazard. Mater. 301, 492–503 (2016)
17.
go back to reference J. Shin et al., Numerical modeling of close-in detonations of high explosives. Eng. Struct. 81(0), 88–97 (2014) J. Shin et al., Numerical modeling of close-in detonations of high explosives. Eng. Struct. 81(0), 88–97 (2014)
18.
go back to reference V.W. Manner et al., The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos. Pyrotech. 37(2), 198–206 (2012) V.W. Manner et al., The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos. Pyrotech. 37(2), 198–206 (2012)
19.
go back to reference X.L. Xing et al., Discussions on thermobaric explosives (TBXs). Propellants Explos. Pyrotech. 39(1), 14–17 (2014) X.L. Xing et al., Discussions on thermobaric explosives (TBXs). Propellants Explos. Pyrotech. 39(1), 14–17 (2014)
20.
go back to reference K.L. McNesby et al., Afterburn ignition delay and shock augmentation in fuel rich solid explosives. Propellants Explos. Pyrotech. 35(1), 57–65 (2010) K.L. McNesby et al., Afterburn ignition delay and shock augmentation in fuel rich solid explosives. Propellants Explos. Pyrotech. 35(1), 57–65 (2010)
21.
go back to reference M.B. Talawar et al., Emerging trends in advanced high energy materials. Combust. Explos. Shock Waves 43(1), 62–72 (2007) M.B. Talawar et al., Emerging trends in advanced high energy materials. Combust. Explos. Shock Waves 43(1), 62–72 (2007)
22.
go back to reference J.P. Agrawal, Status of Explosives. High Energy Materials (Wiley, New York, 2010), pp. 69–161 J.P. Agrawal, Status of Explosives. High Energy Materials (Wiley, New York, 2010), pp. 69–161
23.
go back to reference R. Meyer, J. Kohler, A. Homburg, Explosives, 6th edn. (Wiley, Weinheim, 2007) R. Meyer, J. Kohler, A. Homburg, Explosives, 6th edn. (Wiley, Weinheim, 2007)
24.
go back to reference M. Suceska, Test methods for explosives (Springer, New York, 1995) M. Suceska, Test methods for explosives (Springer, New York, 1995)
25.
go back to reference M.M. West, D. Zavitsanos, Composite High Explosives for High Energy Blast Applications (General Electric Co., Philadelphia, 1982), p. 8 M.M. West, D. Zavitsanos, Composite High Explosives for High Energy Blast Applications (General Electric Co., Philadelphia, 1982), p. 8
26.
go back to reference F. Maggi et al., Activated aluminum powders for space propulsion. Powder Technol 270, 46–52 (2015) F. Maggi et al., Activated aluminum powders for space propulsion. Powder Technol 270, 46–52 (2015)
27.
go back to reference G. Jian et al., Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160(2), 432–437 (2013) G. Jian et al., Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160(2), 432–437 (2013)
28.
go back to reference D. Moradkhani, M. Malekzadeh, E. Ahmadi, Nanostructured MnO2 synthesized via methane gas reduction of manganese ore and hydrothermal precipitation methods. Trans Nonferrous Met Soc China 23(1), 134–139 (2013) D. Moradkhani, M. Malekzadeh, E. Ahmadi, Nanostructured MnO2 synthesized via methane gas reduction of manganese ore and hydrothermal precipitation methods. Trans Nonferrous Met Soc China 23(1), 134–139 (2013)
29.
go back to reference L. Kang et al., Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors. J. Alloys Compd. 648, 190–194 (2015) L. Kang et al., Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors. J. Alloys Compd. 648, 190–194 (2015)
30.
go back to reference S. Elbasuney, Enhanced flame retardant polymer nanocomposites, in school of chemical and environmental engineering 2013, Nottingham: Nottingham. p. 280 S. Elbasuney, Enhanced flame retardant polymer nanocomposites, in school of chemical and environmental engineering 2013, Nottingham: Nottingham. p. 280
31.
go back to reference S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268(0), 158–164 (2014) S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268(0), 158–164 (2014)
32.
go back to reference S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015) S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)
33.
go back to reference S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015) S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)
34.
go back to reference S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017) S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)
35.
go back to reference S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017) S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)
36.
go back to reference K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv. Drug Deliv. Rev. 60(3), 299–327 (2008) K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv. Drug Deliv. Rev. 60(3), 299–327 (2008)
37.
go back to reference S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015) S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)
38.
go back to reference K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology (William Andrew, Norwich, 2001) K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology (William Andrew, Norwich, 2001)
39.
go back to reference J. Li, Engineering Nanoparticles in Near-Critical and Supercritical Water (University of Nottingham, Nottingham, 2008) J. Li, Engineering Nanoparticles in Near-Critical and Supercritical Water (University of Nottingham, Nottingham, 2008)
40.
go back to reference P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. (AIChE) J. 41(7), 1723–1778 (1995) P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. (AIChE) J. 41(7), 1723–1778 (1995)
41.
go back to reference H. Hobbs, Biocatalysis in ‘Green Solvents’, Chemistry (University of Nottingham, Notttingham, 2006) H. Hobbs, Biocatalysis in ‘Green Solvents’, Chemistry (University of Nottingham, Notttingham, 2006)
42.
go back to reference J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999) J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999)
43.
go back to reference K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002) K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)
44.
go back to reference J.B. Dunn, D.I. Urquhart, P.E. Savage, Terephthlic acid synthesis in supercritical water. Adv. Synth. Catal. 344(3–4), 385–392 (2002) J.B. Dunn, D.I. Urquhart, P.E. Savage, Terephthlic acid synthesis in supercritical water. Adv. Synth. Catal. 344(3–4), 385–392 (2002)
45.
go back to reference T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000) T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000)
46.
go back to reference T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75(9), 2615–2618 (1992) T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75(9), 2615–2618 (1992)
47.
go back to reference M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos. Pyrotech. 24(5), 280–285 (1999) M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos. Pyrotech. 24(5), 280–285 (1999)
48.
go back to reference M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives. Propellants Explos. Pyrotech. 16(4), 197–202 (1991) M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives. Propellants Explos. Pyrotech. 16(4), 197–202 (1991)
49.
go back to reference S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017) S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)
50.
go back to reference A.I. El-Batal et al., Response surface methodology optimization of melanin production by streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Cluster Sci. 28(3), 1083–1112 (2017) A.I. El-Batal et al., Response surface methodology optimization of melanin production by streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Cluster Sci. 28(3), 1083–1112 (2017)
51.
go back to reference M. Abd Elkodous et al., Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B 180, 411–428 (2019) M. Abd Elkodous et al., Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B 180, 411–428 (2019)
52.
go back to reference M.A. Elkodous et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1–xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci.: Mater. Electron. 30(9), 8312–8328 (2019) M.A. Elkodous et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1–xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci.: Mater. Electron. 30(9), 8312–8328 (2019)
53.
go back to reference M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1–x) Fe2O4;(M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018) M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1–x) Fe2O4;(M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)
54.
go back to reference A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018) A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)
55.
go back to reference M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019) M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)
56.
go back to reference R.J. Gohari et al., Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1), 87–95 (2014) R.J. Gohari et al., Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1), 87–95 (2014)
57.
go back to reference J.-G. Wang et al., Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance. Mater. Lett. 72, 18–21 (2012) J.-G. Wang et al., Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance. Mater. Lett. 72, 18–21 (2012)
58.
go back to reference B.G.S. Raj et al., Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21(6), 1933–1938 (2014) B.G.S. Raj et al., Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21(6), 1933–1938 (2014)
59.
go back to reference C. Mandilas et al., Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater. Sci. Eng. B 178(1), 22–30 (2013) C. Mandilas et al., Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater. Sci. Eng. B 178(1), 22–30 (2013)
60.
go back to reference M. Paskevicius et al., Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar. J. Alloys Compd. 481(1–2), 595–599 (2009) M. Paskevicius et al., Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar. J. Alloys Compd. 481(1–2), 595–599 (2009)
61.
go back to reference B. Alinejad, K. Mahmoodi, A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy 34(19), 7934–7938 (2009) B. Alinejad, K. Mahmoodi, A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy 34(19), 7934–7938 (2009)
Metadata
Title
Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance
Authors
Sherif Elbasuney
Gharieb S. El-Sayyad
M. Yehia
M. Gaber Zaky
M. Abd Elkodous
Publication date
23-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04653-4

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue