Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2021

31-03-2021

Novel synthesis of nickel ferrite magnetic nanoparticles by an in‐liquid plasma

Authors: Masoud Shabani, Ehsan Saebnoori, S. A. Hassanzadeh-tabrizi, Hamid Reza Bakhsheshi-Rad

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic nanoparticles of nickel ferrites were successfully synthesized by the in-liquid plasma method. The synthesis process is performed in three different solutions. The anode material is made of iron and nickel powder by Spark Plasma Sintering (SPS) process. By discharging on the anode’s surface in the solution, a plasma forms on the electrode surface, and nanosize particles detached from the electrode and immediately oxidized into a ferrite spinel. Spectroscopic, morphological, structural, and magnetic characterization showed that the electrolyte type significantly affects nanoparticle features. The X-ray diffraction of nanoparticles confirms the formation of spinel NiFe2O4, and the highest crystallinity has belonged to the nanoparticles synthesized with ethanol and sodium hydroxide. Based on the results, the particles synthesized in the optimum solution are spherical with an average size of ~ 10 nm, and their specific surface area is significantly enhanced to 55.237 m2/g. A ferromagnetic property with 89.75 Oe coercivity and a saturation magnetization of 42.27 emu/g has been measured for the synthesized powders at room temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Sudheesh, N. Thomas, N. Roona, P. Baghya, V. Sebastian, Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M = Co and Ni) prepared by solution combustion method. Ceram. Int. 43(17), 15002–15009 (2017)CrossRef V. Sudheesh, N. Thomas, N. Roona, P. Baghya, V. Sebastian, Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M = Co and Ni) prepared by solution combustion method. Ceram. Int. 43(17), 15002–15009 (2017)CrossRef
2.
go back to reference H. Yin, H. Too, G. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26(29), 5818–5826 (2005)CrossRef H. Yin, H. Too, G. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26(29), 5818–5826 (2005)CrossRef
3.
go back to reference Y. Fu, Y. Wan, H. Xia, X. Wang, Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012)CrossRef Y. Fu, Y. Wan, H. Xia, X. Wang, Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012)CrossRef
4.
go back to reference L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune, P. Jallet, Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212(2), 474–482 (1999)CrossRef L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune, P. Jallet, Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212(2), 474–482 (1999)CrossRef
5.
go back to reference M.H. Habibi, F. Fakhri, Hydrothermal synthesis of nickel iron oxide nano-composite and application as magnetically separable photocatalyst for degradation of Solar Blue G dye. J. Mater. Sci.: Mater. Electron. 28(19), 14091–14096 (2017) M.H. Habibi, F. Fakhri, Hydrothermal synthesis of nickel iron oxide nano-composite and application as magnetically separable photocatalyst for degradation of Solar Blue G dye. J. Mater. Sci.: Mater. Electron. 28(19), 14091–14096 (2017)
6.
go back to reference A. Sutka, The role of stoichiometry on gas response of nanostructured sol–gel auto combustion derived nickel ferrite. Sens. Lett. 11(10), 2010–2013 (2013)CrossRef A. Sutka, The role of stoichiometry on gas response of nanostructured sol–gel auto combustion derived nickel ferrite. Sens. Lett. 11(10), 2010–2013 (2013)CrossRef
7.
go back to reference Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin solid films 407(1–2), 109–113 (2002)CrossRef Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin solid films 407(1–2), 109–113 (2002)CrossRef
8.
go back to reference J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu, Characterization of FeNi3 alloy in Fe–Ni–O system synthesized by citric acid combustion method. Scr. Mater. 54(1), 109–113 (2006)CrossRef J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu, Characterization of FeNi3 alloy in Fe–Ni–O system synthesized by citric acid combustion method. Scr. Mater. 54(1), 109–113 (2006)CrossRef
9.
go back to reference L. Guo, X. Shen, X. Meng, Y. Feng, Effect of Sm3 + ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J. Alloys Compd. 490(1–2), 301–306 (2010)CrossRef L. Guo, X. Shen, X. Meng, Y. Feng, Effect of Sm3 + ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J. Alloys Compd. 490(1–2), 301–306 (2010)CrossRef
10.
go back to reference S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb 3 + or Pr 3 + ions in cobalt–nickel ferrite. J. Mater. Sci.: Mater. Electron. 30(7), 6902–6909 (2019) S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb 3 + or Pr 3 + ions in cobalt–nickel ferrite. J. Mater. Sci.: Mater. Electron. 30(7), 6902–6909 (2019)
11.
go back to reference P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65(9), 1438–1440 (2011)CrossRef P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65(9), 1438–1440 (2011)CrossRef
12.
go back to reference F. Bensebaa, F. Zavaliche, P. L’ecuyer, R. Cochrane, T. Veres, Microwave synthesis and characterization of Co–ferrite nanoparticles. J. Colloid Interface Sci. 277(1), 104–110 (2004)CrossRef F. Bensebaa, F. Zavaliche, P. L’ecuyer, R. Cochrane, T. Veres, Microwave synthesis and characterization of Co–ferrite nanoparticles. J. Colloid Interface Sci. 277(1), 104–110 (2004)CrossRef
13.
go back to reference P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46(12), 2204–2207 (2011)CrossRef P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46(12), 2204–2207 (2011)CrossRef
14.
go back to reference C. Bousquet-Berthelin, D. Chaumont, D. Stuerga, Flash microwave synthesis of trevorite nanoparticles. J. Solid State Chem. 181(3), 616–622 (2008)CrossRef C. Bousquet-Berthelin, D. Chaumont, D. Stuerga, Flash microwave synthesis of trevorite nanoparticles. J. Solid State Chem. 181(3), 616–622 (2008)CrossRef
15.
go back to reference N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129(41), 12374–12375 (2007)CrossRef N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129(41), 12374–12375 (2007)CrossRef
16.
go back to reference S. Patange, S.E. Shirsath, S. Jadhav, K. Lohar, D. Mane, K. Jadhav, Rietveld refinement and switching properties of Cr3 + substituted NiFe2O4 ferrites. Mater. Lett. 64(6), 722–724 (2010)CrossRef S. Patange, S.E. Shirsath, S. Jadhav, K. Lohar, D. Mane, K. Jadhav, Rietveld refinement and switching properties of Cr3 + substituted NiFe2O4 ferrites. Mater. Lett. 64(6), 722–724 (2010)CrossRef
17.
go back to reference W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin, Q.A. Pankhurst, Self-propagating high-temperature synthesis of ferrites MFe 2 O 4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. J. Mater. Chem. 9(10), 2545–2552 (1999)CrossRef W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin, Q.A. Pankhurst, Self-propagating high-temperature synthesis of ferrites MFe 2 O 4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. J. Mater. Chem. 9(10), 2545–2552 (1999)CrossRef
18.
go back to reference H. Li, H. Wu, G. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol. 198(1), 157–166 (2010)CrossRef H. Li, H. Wu, G. Xiao, Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol. 198(1), 157–166 (2010)CrossRef
19.
go back to reference C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104(6), 1141–1145 (2000)CrossRef C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104(6), 1141–1145 (2000)CrossRef
20.
go back to reference T. Hirai, J. Kobayashi, I. Komasawa, Preparation of acicular ferrite fine particles using an emulsion liquid membrane system. Langmuir 15(19), 6291–6298 (1999)CrossRef T. Hirai, J. Kobayashi, I. Komasawa, Preparation of acicular ferrite fine particles using an emulsion liquid membrane system. Langmuir 15(19), 6291–6298 (1999)CrossRef
21.
go back to reference L. Chen, H. Dai, Y. Shen, J. Bai, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J. Alloys Compd. 491(1–2), L33–L38 (2010)CrossRef L. Chen, H. Dai, Y. Shen, J. Bai, Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J. Alloys Compd. 491(1–2), L33–L38 (2010)CrossRef
22.
go back to reference Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama, T. Mizuno, Controlled formation of metallic nanoballs during plasma electrolysis. Appl. Phys. Lett. 91(4), 041501 (2007)CrossRef Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama, T. Mizuno, Controlled formation of metallic nanoballs during plasma electrolysis. Appl. Phys. Lett. 91(4), 041501 (2007)CrossRef
23.
go back to reference Y.K. Heo, S.Y. Lee, Effects of the gap distance on the characteristics of gold nanoparticles in nanofluids synthesized using solution plasma processing. Met. Mater. Int. 17(3), 431–434 (2011)CrossRef Y.K. Heo, S.Y. Lee, Effects of the gap distance on the characteristics of gold nanoparticles in nanofluids synthesized using solution plasma processing. Met. Mater. Int. 17(3), 431–434 (2011)CrossRef
24.
go back to reference Y. Hattori, S. Nomura, S. Mukasa, H. Toyota, T. Inoue, T. Usui, Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water. J. Alloys Compd. 578, 148–152 (2013)CrossRef Y. Hattori, S. Nomura, S. Mukasa, H. Toyota, T. Inoue, T. Usui, Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water. J. Alloys Compd. 578, 148–152 (2013)CrossRef
25.
go back to reference G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Nickel nanoparticles formation from solution plasma using edge-shielded electrode. Plasma Chem. Plasma Process. 31(5), 719 (2011)CrossRef G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Nickel nanoparticles formation from solution plasma using edge-shielded electrode. Plasma Chem. Plasma Process. 31(5), 719 (2011)CrossRef
26.
go back to reference G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Surface morphology of a glow discharge electrode in a solution. J. Appl. Phys. 112(1), 013306 (2012)CrossRef G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Surface morphology of a glow discharge electrode in a solution. J. Appl. Phys. 112(1), 013306 (2012)CrossRef
27.
go back to reference A. Lal, H. Bleuler, R. Wüthrich, Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem. Commun. 10(3), 488–491 (2008)CrossRef A. Lal, H. Bleuler, R. Wüthrich, Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem. Commun. 10(3), 488–491 (2008)CrossRef
28.
go back to reference M. Tokushige, T. Nishikiori, M. Lafouresse, C. Michioka, K. Yoshimura, Y. Fukunaka, Y. Ito, Formation of FePt intermetallic compound nanoparticles by plasma-induced cathodic discharge electrolysis. Electrochim. Acta 55(27), 8154–8159 (2010)CrossRef M. Tokushige, T. Nishikiori, M. Lafouresse, C. Michioka, K. Yoshimura, Y. Fukunaka, Y. Ito, Formation of FePt intermetallic compound nanoparticles by plasma-induced cathodic discharge electrolysis. Electrochim. Acta 55(27), 8154–8159 (2010)CrossRef
29.
go back to reference P. Pootawang, N. Saito, O. Takai, S.-Y. Lee, Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing. Nanotechnology 23(39), 395602 (2012)CrossRef P. Pootawang, N. Saito, O. Takai, S.-Y. Lee, Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing. Nanotechnology 23(39), 395602 (2012)CrossRef
30.
go back to reference S. Samimi-Sedeh, E. Saebnoori, A. Talaiekhozani, M.A. Fulazzaky, M. Roestamy, A.M. Amani, Assessing the efficiency of sodium ferrate production by solution plasma process. Plasma Chem. Plasma Process. 39(4), 769–786 (2019)CrossRef S. Samimi-Sedeh, E. Saebnoori, A. Talaiekhozani, M.A. Fulazzaky, M. Roestamy, A.M. Amani, Assessing the efficiency of sodium ferrate production by solution plasma process. Plasma Chem. Plasma Process. 39(4), 769–786 (2019)CrossRef
31.
go back to reference S.S. Sedeh, E. Saebnoori, Water treatment system, Google Patents (2018) S.S. Sedeh, E. Saebnoori, Water treatment system, Google Patents (2018)
32.
go back to reference B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Boston, 1956). B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Boston, 1956).
33.
go back to reference K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties. Ceram. Int. 42(2), 2741–2749 (2016)CrossRef K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties. Ceram. Int. 42(2), 2741–2749 (2016)CrossRef
34.
go back to reference C. Li, X. Cao, W. Li, B. Zhang, L. Xiao, Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. J. Alloys Compd. 773, 762–769 (2019)CrossRef C. Li, X. Cao, W. Li, B. Zhang, L. Xiao, Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. J. Alloys Compd. 773, 762–769 (2019)CrossRef
35.
go back to reference Y. Nakasugi, G. Saito, T. Yamashita, T. Akiyama, Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. J. Appl. Phys. 115(12), 123303 (2014)CrossRef Y. Nakasugi, G. Saito, T. Yamashita, T. Akiyama, Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. J. Appl. Phys. 115(12), 123303 (2014)CrossRef
36.
go back to reference G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Synthesis of copper/copper oxide nanoparticles by solution plasma. J. Appl. Phys. 110(2), 023302 (2011)CrossRef G. Saito, S. Hosokai, M. Tsubota, T. Akiyama, Synthesis of copper/copper oxide nanoparticles by solution plasma. J. Appl. Phys. 110(2), 023302 (2011)CrossRef
37.
go back to reference G. Saito, S. Hosokai, T. Akiyama, S. Yoshida, S. Yatsu, S. Watanabe, Size-controlled Ni nanoparticles formation by solution glow discharge. J. Phys. Soc. Jpn. 79(8), 083501 (2010)CrossRef G. Saito, S. Hosokai, T. Akiyama, S. Yoshida, S. Yatsu, S. Watanabe, Size-controlled Ni nanoparticles formation by solution glow discharge. J. Phys. Soc. Jpn. 79(8), 083501 (2010)CrossRef
38.
go back to reference Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties. J. Phys. Chem. B 112(36), 11292–11297 (2008)CrossRef Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties. J. Phys. Chem. B 112(36), 11292–11297 (2008)CrossRef
39.
go back to reference A.B. Rajput, S. Hazra, N.B. Krishna, P. Chavali, S. Datla, N.N. Ghosh, Preparation of NiFe2O4 nanopowder via EDTA precursor and study of its properties. Particuology 10(1), 29–34 (2012)CrossRef A.B. Rajput, S. Hazra, N.B. Krishna, P. Chavali, S. Datla, N.N. Ghosh, Preparation of NiFe2O4 nanopowder via EDTA precursor and study of its properties. Particuology 10(1), 29–34 (2012)CrossRef
40.
go back to reference S.A. Hoseini, S. Khademolhoseini, Investigation of the structural, optical and magnetic properties of nickel ferrite nanoparticles synthesized through modified sol–gel method. J. Mater. Sci.: Mater. Electron. 27(6), 5943–5947 (2016) S.A. Hoseini, S. Khademolhoseini, Investigation of the structural, optical and magnetic properties of nickel ferrite nanoparticles synthesized through modified sol–gel method. J. Mater. Sci.: Mater. Electron. 27(6), 5943–5947 (2016)
42.
go back to reference K. Nakamoto, Infrared and Raman Spectra of Inorganic and Organometallic Compounds (Wiley, New York, 1986). K. Nakamoto, Infrared and Raman Spectra of Inorganic and Organometallic Compounds (Wiley, New York, 1986).
43.
go back to reference Z. Zhou, J. Xue, J. Wang, H. Chan, T. Yu, Z. Shen, NiFe 2 O 4 nanoparticles formed in situ in silica matrix by mechanical activation. J. Appl. Phys. 91(9), 6015–6020 (2002)CrossRef Z. Zhou, J. Xue, J. Wang, H. Chan, T. Yu, Z. Shen, NiFe 2 O 4 nanoparticles formed in situ in silica matrix by mechanical activation. J. Appl. Phys. 91(9), 6015–6020 (2002)CrossRef
44.
go back to reference B.P. Jacob, A. Kumar, R. Pant, S. Singh, E. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. Bull. Mater. Sci. 34(7), 1345–1350 (2011)CrossRef B.P. Jacob, A. Kumar, R. Pant, S. Singh, E. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. Bull. Mater. Sci. 34(7), 1345–1350 (2011)CrossRef
45.
go back to reference S.V. Bhosale, P. Ekambe, S.V. Bhoraskar, V.L. Mathe, Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl. Surf. Sci. 441, 724–733 (2018)CrossRef S.V. Bhosale, P. Ekambe, S.V. Bhoraskar, V.L. Mathe, Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl. Surf. Sci. 441, 724–733 (2018)CrossRef
46.
go back to reference T. Shanmugavel, S.G. Raj, G.R. Kumar, G. Rajarajan, D. Saravanan, Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. J. King Saud Univ. Sci. 27(2), 176–181 (2015)CrossRef T. Shanmugavel, S.G. Raj, G.R. Kumar, G. Rajarajan, D. Saravanan, Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. J. King Saud Univ. Sci. 27(2), 176–181 (2015)CrossRef
47.
go back to reference S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18(3), 035602 (2007)CrossRef S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18(3), 035602 (2007)CrossRef
48.
go back to reference H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015)CrossRef H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015)CrossRef
49.
go back to reference H. Kargan, Synthesis of nickel ferrite nanoparticles by co-precipitation chemical method. Int. J. Phys. Sci. 8(18), 854–858 (2013)CrossRef H. Kargan, Synthesis of nickel ferrite nanoparticles by co-precipitation chemical method. Int. J. Phys. Sci. 8(18), 854–858 (2013)CrossRef
50.
go back to reference Y. Liang, Y. Che, Inorganic Thermodynamic Data Sheet (Northeastern University Press, Shenyang, 1993). Y. Liang, Y. Che, Inorganic Thermodynamic Data Sheet (Northeastern University Press, Shenyang, 1993).
51.
go back to reference S.M. Aydoghmish, S. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceram. Int. 45(12), 14934–14942 (2019)CrossRef S.M. Aydoghmish, S. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceram. Int. 45(12), 14934–14942 (2019)CrossRef
53.
go back to reference K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)CrossRef K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)CrossRef
54.
go back to reference P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection. J. Nanostruct. Chem. 9(2), 95–110 (2019)CrossRef P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Nanocrystalline-modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection. J. Nanostruct. Chem. 9(2), 95–110 (2019)CrossRef
55.
go back to reference U. Kurtan, H. Güngüneş, H. Sözeri, A. Baykal, Synthesis and characterization of monodisperse NiFe2O4 nanoparticles. Ceram. Int. 42(7), 7987–7992 (2016)CrossRef U. Kurtan, H. Güngüneş, H. Sözeri, A. Baykal, Synthesis and characterization of monodisperse NiFe2O4 nanoparticles. Ceram. Int. 42(7), 7987–7992 (2016)CrossRef
56.
go back to reference J. Lim, S.P. Yeap, H.X. Che, S.C. Low, Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 8(1), 381 (2013)CrossRef J. Lim, S.P. Yeap, H.X. Che, S.C. Low, Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 8(1), 381 (2013)CrossRef
57.
go back to reference B.V. Prasad, K. Ramesh, A. Srinivas, Structural and magnetic properties of nanocrystalline nickel ferrite (NiFe2O4) synthesized in sol-gel and combustion routes. Solid State Sci. 86, 86–97 (2018)CrossRef B.V. Prasad, K. Ramesh, A. Srinivas, Structural and magnetic properties of nanocrystalline nickel ferrite (NiFe2O4) synthesized in sol-gel and combustion routes. Solid State Sci. 86, 86–97 (2018)CrossRef
58.
go back to reference C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Self-template synthesis of double shelled ZnS-NiS1. 97 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)CrossRef C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Self-template synthesis of double shelled ZnS-NiS1. 97 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)CrossRef
59.
go back to reference M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)CrossRef M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)CrossRef
60.
go back to reference C.-S. Lin, C.-C. Hwang, T.-H. Huang, G.-P. Wang, C.-H. Peng, Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139(1), 24–36 (2007)CrossRef C.-S. Lin, C.-C. Hwang, T.-H. Huang, G.-P. Wang, C.-H. Peng, Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139(1), 24–36 (2007)CrossRef
61.
go back to reference J. Jiang, Y.-M. Yang, Facile synthesis of nanocrystalline spinel NiFe2O4 via a novel soft chemistry route. Mater. Lett. 61(21), 4276–4279 (2007)CrossRef J. Jiang, Y.-M. Yang, Facile synthesis of nanocrystalline spinel NiFe2O4 via a novel soft chemistry route. Mater. Lett. 61(21), 4276–4279 (2007)CrossRef
62.
go back to reference G. Dixit, J. Singh, R. Srivastava, H. Agrawal, R. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287 (2010) G. Dixit, J. Singh, R. Srivastava, H. Agrawal, R. Choudhary, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287 (2010)
63.
go back to reference A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40(4), 5881–5887 (2014)CrossRef A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40(4), 5881–5887 (2014)CrossRef
64.
go back to reference M. George, A.M. John, S.S. Nair, P. Joy, M. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)CrossRef M. George, A.M. John, S.S. Nair, P. Joy, M. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)CrossRef
Metadata
Title
Novel synthesis of nickel ferrite magnetic nanoparticles by an in‐liquid plasma
Authors
Masoud Shabani
Ehsan Saebnoori
S. A. Hassanzadeh-tabrizi
Hamid Reza Bakhsheshi-Rad
Publication date
31-03-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05698-9

Other articles of this Issue 8/2021

Journal of Materials Science: Materials in Electronics 8/2021 Go to the issue