Skip to main content
Top
Published in: Acta Mechanica Sinica 1/2019

29-10-2018 | Research Paper

Numerical and experimental analysis of the closed-cell aluminium foam under low velocity impact using computerized tomography technique

Authors: S. Talebi, M. Sadighi, M. M. Aghdam

Published in: Acta Mechanica Sinica | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, the response of closed-cell aluminum foams under low-velocity impact has been studied numerically and experimentally. Computerized tomography is employed to access three-dimensional (3D) microstructure of the closed-cell aluminum foam. Effective parameters including foam density and the velocity of impactor on foam dynamic behavior are investigated. In order to show the validity and accuracy of results, some static experiments and low-velocity impact tests have been conducted. Results indicate a remarkable agreement between the simulation and experimental data. Moreover, the results show that by increasing the density of foam samples, the highest difference between numerical and experimental results for peak stress and absorbed energy are 35.9% and 6.9%, respectively, which is related to the highest density. For impact velocities ranging from 3.1 to 4.2 m/s, the maximum discrepancy in peak stress and absorbed energy occur at an impact velocity of 3.1 m/s in which corresponding errors are 33.3% and 6.6%, respectively. For the impact velocity of 40 m/s, the highest increase in peak stress and absorbed energy are 667.9% and 370.3% associated with the density of 0.5 and 0.3 g/cm3, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peroni, M., Solomos, G., Pizzinato, V.: Impact behaviour testing of aluminium foam. Int. J. Impact Eng. 53, 74–83 (2013)CrossRef Peroni, M., Solomos, G., Pizzinato, V.: Impact behaviour testing of aluminium foam. Int. J. Impact Eng. 53, 74–83 (2013)CrossRef
2.
go back to reference Banhart, J.: Manufacture, characterisation, and application of cellular materials and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)CrossRef Banhart, J.: Manufacture, characterisation, and application of cellular materials and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)CrossRef
3.
go back to reference Ashby, F., Evans, A., Fleck, N.A., et al.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000) Ashby, F., Evans, A., Fleck, N.A., et al.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000)
4.
go back to reference Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)CrossRef Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)CrossRef
5.
go back to reference Singh, R., Lee, P.D., Lindley, T.C., et al.: Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 6, 2342–2351 (2010)CrossRef Singh, R., Lee, P.D., Lindley, T.C., et al.: Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 6, 2342–2351 (2010)CrossRef
6.
go back to reference Dannemann, K.A., Lankford, J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)CrossRef Dannemann, K.A., Lankford, J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)CrossRef
7.
go back to reference Liu, Y., Gong, W., Zhang, X.: Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam. Comput. Mater. Sci. 91, 223–230 (2014)CrossRef Liu, Y., Gong, W., Zhang, X.: Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam. Comput. Mater. Sci. 91, 223–230 (2014)CrossRef
8.
go back to reference Montanini, R.: Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int. J. Mech. Sci. 47, 26–42 (2005)CrossRef Montanini, R.: Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int. J. Mech. Sci. 47, 26–42 (2005)CrossRef
9.
go back to reference Fang, Q., Zhang, J., Zhang, Y., et al.: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 124, 409–420 (2015)CrossRef Fang, Q., Zhang, J., Zhang, Y., et al.: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact. Compos. Struct. 124, 409–420 (2015)CrossRef
10.
go back to reference Li, B., Zhao, G., Lu, T.: Low strain rate compressive behavior of high porosity closed-cell aluminum foams. Sci. China Technol. Sci. 55, 451–463 (2012)CrossRef Li, B., Zhao, G., Lu, T.: Low strain rate compressive behavior of high porosity closed-cell aluminum foams. Sci. China Technol. Sci. 55, 451–463 (2012)CrossRef
11.
go back to reference Yun, N., Shin, D., Ji, S., et al.: Experiments on blast protective systems using aluminum foam panels. KSCE J. Civ. Eng. 18, 2153–2161 (2014)CrossRef Yun, N., Shin, D., Ji, S., et al.: Experiments on blast protective systems using aluminum foam panels. KSCE J. Civ. Eng. 18, 2153–2161 (2014)CrossRef
12.
go back to reference Wang, P., Xu, S., Li, Z., et al.: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 620, 253–261 (2015)CrossRef Wang, P., Xu, S., Li, Z., et al.: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 620, 253–261 (2015)CrossRef
13.
go back to reference Toda, H., Ohgaki, T., Uesugi, K., et al.: In situ observation of fracture of aluminium foam using synchrotron X-ray microtomography. Key Eng. Mater. 297, 1189–1195 (2005)CrossRef Toda, H., Ohgaki, T., Uesugi, K., et al.: In situ observation of fracture of aluminium foam using synchrotron X-ray microtomography. Key Eng. Mater. 297, 1189–1195 (2005)CrossRef
14.
go back to reference Toda, H., Takata, M., Ohgaki, T., et al.: 3-D image-based mechanical simulation of aluminium foams: effects of internal microstructure. Adv. Eng. Mater. 8, 459–467 (2006)CrossRef Toda, H., Takata, M., Ohgaki, T., et al.: 3-D image-based mechanical simulation of aluminium foams: effects of internal microstructure. Adv. Eng. Mater. 8, 459–467 (2006)CrossRef
15.
go back to reference Toda, H., Sinclair, I., Buffière, J., et al.: A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography. Acta Mater. 52, 1305–1317 (2004)CrossRef Toda, H., Sinclair, I., Buffière, J., et al.: A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography. Acta Mater. 52, 1305–1317 (2004)CrossRef
16.
go back to reference Sassov, A., Cornelis, E., Dyck, D.: Non-destructive 3D investigation of metal foam microstructure. Materialwissenschaft Werkst. 31, 571–573 (2000)CrossRef Sassov, A., Cornelis, E., Dyck, D.: Non-destructive 3D investigation of metal foam microstructure. Materialwissenschaft Werkst. 31, 571–573 (2000)CrossRef
17.
go back to reference Ohgaki, T., Toda, H., Kobayashi, M., et al.: In-situ high resolution x-ray CT observation of compressive and damage behavior of aluminum foams by local tomography technique. Adv. Eng. Mater. 8, 473–475 (2006)CrossRef Ohgaki, T., Toda, H., Kobayashi, M., et al.: In-situ high resolution x-ray CT observation of compressive and damage behavior of aluminum foams by local tomography technique. Adv. Eng. Mater. 8, 473–475 (2006)CrossRef
18.
go back to reference Elmoutaouakkil, A., Salvo, L., Maire, E., et al.: 2D and 3D characterization of metal foams using X-ray tomography. Adv. Eng. Mater. 4, 803–807 (2002)CrossRef Elmoutaouakkil, A., Salvo, L., Maire, E., et al.: 2D and 3D characterization of metal foams using X-ray tomography. Adv. Eng. Mater. 4, 803–807 (2002)CrossRef
19.
go back to reference Veyhl, C., Belova, I.V., Murch, G.E., et al.: Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography. Mater. Sci. Eng. A 528, 4550–4555 (2011)CrossRef Veyhl, C., Belova, I.V., Murch, G.E., et al.: Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography. Mater. Sci. Eng. A 528, 4550–4555 (2011)CrossRef
20.
go back to reference Miedzinska, D., Niezgoda, T., Gieleta, R.: Numerical and experimental aluminum foam microstructure testing with the use of computed tomography. Comput. Mater. Sci. 64, 90–95 (2012)CrossRef Miedzinska, D., Niezgoda, T., Gieleta, R.: Numerical and experimental aluminum foam microstructure testing with the use of computed tomography. Comput. Mater. Sci. 64, 90–95 (2012)CrossRef
21.
go back to reference Ramirez, J.F., Cardona, M., Velez, J.A., et al.: Numerical modeling and simulation of uniaxial compression of aluminum foams using FEM and 3D-CT images. Proc. Mater. Sci. 4, 227–231 (2014)CrossRef Ramirez, J.F., Cardona, M., Velez, J.A., et al.: Numerical modeling and simulation of uniaxial compression of aluminum foams using FEM and 3D-CT images. Proc. Mater. Sci. 4, 227–231 (2014)CrossRef
22.
go back to reference Saadatfar, M., Mukherjee, M., Madadi, M., et al.: Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression. Acta Mater. 60, 3604–3615 (2012)CrossRef Saadatfar, M., Mukherjee, M., Madadi, M., et al.: Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression. Acta Mater. 60, 3604–3615 (2012)CrossRef
23.
go back to reference Kader, M.A., Islam, M.A., Hazell, P.J., et al.: Modelling and characterization of cell collapse in aluminium foams during dynamic loading. Int. J. Impact Eng. 96, 78–88 (2016)CrossRef Kader, M.A., Islam, M.A., Hazell, P.J., et al.: Modelling and characterization of cell collapse in aluminium foams during dynamic loading. Int. J. Impact Eng. 96, 78–88 (2016)CrossRef
24.
go back to reference Islam, M.A., Brown, A.D., Hazell, P.J., et al.: Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading. Int. J. Impact Eng. 114, 111–122 (2018)CrossRef Islam, M.A., Brown, A.D., Hazell, P.J., et al.: Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading. Int. J. Impact Eng. 114, 111–122 (2018)CrossRef
25.
go back to reference Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater. Sci. Eng. C 60, 163–183 (2016)CrossRef Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater. Sci. Eng. C 60, 163–183 (2016)CrossRef
26.
go back to reference Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells. Int. J. Mech. Sci. 106, 19–38 (2016)CrossRef Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells. Int. J. Mech. Sci. 106, 19–38 (2016)CrossRef
27.
go back to reference Su, X.Y., Yu, T.X., Reid, S.R.: Inertia-sensitive impact energy absorbing structures, part II: effect of strain rate. Int. J. Impact Eng. 16, 673–689 (1995)CrossRef Su, X.Y., Yu, T.X., Reid, S.R.: Inertia-sensitive impact energy absorbing structures, part II: effect of strain rate. Int. J. Impact Eng. 16, 673–689 (1995)CrossRef
Metadata
Title
Numerical and experimental analysis of the closed-cell aluminium foam under low velocity impact using computerized tomography technique
Authors
S. Talebi
M. Sadighi
M. M. Aghdam
Publication date
29-10-2018
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 1/2019
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0795-7

Other articles of this Issue 1/2019

Acta Mechanica Sinica 1/2019 Go to the issue

Premium Partners