Skip to main content
Top
Published in: Journal of Scientific Computing 3/2017

18-01-2017

Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime

Authors: Weizhu Bao, Yongyong Cai, Xiaowei Jia, Qinglin Tang

Published in: Journal of Scientific Computing | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We analyze rigorously error estimates and compare numerically spatial/temporal resolution of various numerical methods for the discretization of the Dirac equation in the nonrelativistic limit regime, involving a small dimensionless parameter \(0<\varepsilon \ll 1\) which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e. there are propagating waves with wavelength \(O(\varepsilon ^2)\) and O(1) in time and space, respectively. We begin with several frequently used finite difference time domain (FDTD) methods and obtain rigorously their error estimates in the nonrelativistic limit regime by paying particular attention to how error bounds depend explicitly on mesh size h and time step \(\tau \) as well as the small parameter \(\varepsilon \). Based on the error bounds, in order to obtain ‘correct’ numerical solutions in the nonrelativistic limit regime, i.e. \(0<\varepsilon \ll 1\), the FDTD methods share the same \(\varepsilon \)-scalability on time step and mesh size as: \(\tau =O(\varepsilon ^3)\) and \(h=O(\sqrt{\varepsilon })\). Then we propose and analyze two numerical methods for the discretization of the Dirac equation by using the Fourier spectral discretization for spatial derivatives combined with the symmetric exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their \(\varepsilon \)-scalability is improved to \(\tau =O(\varepsilon ^2)\) and \(h=O(1)\) when \(0<\varepsilon \ll 1\). Extensive numerical results are reported to support our error estimates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abanin, D.A., Morozov, S.V., Ponomarenko, L.A., Gorbachev, R.V., Mayorov, A.S., Katsnelson, M.I., Watanabe, K., Taniguchi, T., Novoselov, K.S., Levito, L.S., Geim, A.K.: Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011)CrossRef Abanin, D.A., Morozov, S.V., Ponomarenko, L.A., Gorbachev, R.V., Mayorov, A.S., Katsnelson, M.I., Watanabe, K., Taniguchi, T., Novoselov, K.S., Levito, L.S., Geim, A.K.: Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011)CrossRef
2.
go back to reference Abenda, S.: Solitary waves for the Maxwell–Dirac and Coulomb–Dirac models. Ann. Inst. Henri Poincaré Phys. Theor 68, 229–244 (1998)MathSciNetMATH Abenda, S.: Solitary waves for the Maxwell–Dirac and Coulomb–Dirac models. Ann. Inst. Henri Poincaré Phys. Theor 68, 229–244 (1998)MathSciNetMATH
4.
5.
go back to reference Antoine, X., Lorin, E., Sater, J., Fillion-Gourdeau, F., Bandrauk, A.D.: Absorbing boundary conditions for relativistic quantum mechanics equations. J. Comput. Phys. 277, 268–304 (2014)MathSciNetCrossRefMATH Antoine, X., Lorin, E., Sater, J., Fillion-Gourdeau, F., Bandrauk, A.D.: Absorbing boundary conditions for relativistic quantum mechanics equations. J. Comput. Phys. 277, 268–304 (2014)MathSciNetCrossRefMATH
6.
go back to reference Archilla, B.G., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRefMATH Archilla, B.G., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRefMATH
7.
8.
go back to reference Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)MathSciNetCrossRefMATH Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)MathSciNetCrossRefMATH
9.
go back to reference Bao, W., Cai, Y.: Optimal error estmiates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)CrossRefMATH Bao, W., Cai, Y.: Optimal error estmiates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)CrossRefMATH
10.
go back to reference Bao, W., Cai, Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 52, 1103–1127 (2014)MathSciNetCrossRefMATH Bao, W., Cai, Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 52, 1103–1127 (2014)MathSciNetCrossRefMATH
11.
go back to reference Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)MathSciNetCrossRefMATH Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)MathSciNetCrossRefMATH
12.
go back to reference Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)MathSciNetCrossRefMATH Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)MathSciNetCrossRefMATH
13.
go back to reference Bao, W., Dong, X., Zhao, X.: An exponential wave integrator pseudospectral method for the Klein–Gordon–Zakharov system. SIAM J. Sci. Comput. 35, A2903–A2927 (2013)MathSciNetCrossRefMATH Bao, W., Dong, X., Zhao, X.: An exponential wave integrator pseudospectral method for the Klein–Gordon–Zakharov system. SIAM J. Sci. Comput. 35, A2903–A2927 (2013)MathSciNetCrossRefMATH
14.
go back to reference Bao, W., Dong, X., Zhao, X.: Uniformly correct multiscale time integrators for highly oscillatory second order differention equations. J. Math. Study 47, 111–150 (2014)MathSciNetMATH Bao, W., Dong, X., Zhao, X.: Uniformly correct multiscale time integrators for highly oscillatory second order differention equations. J. Math. Study 47, 111–150 (2014)MathSciNetMATH
15.
go back to reference Bao, W., Shi, J., Markowich, P.A.: On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)MathSciNetCrossRefMATH Bao, W., Shi, J., Markowich, P.A.: On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)MathSciNetCrossRefMATH
16.
go back to reference Bao, W., Shi, J., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)MathSciNetCrossRefMATH Bao, W., Shi, J., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)MathSciNetCrossRefMATH
17.
18.
go back to reference Bechouche, P., Mauser, N., Poupaud, F.: (Semi)-nonrelativistic limits of the Dirac eqaution with external time-dependent electromagnetic field. Commun. Math. Phys. 197, 405–425 (1998)CrossRefMATH Bechouche, P., Mauser, N., Poupaud, F.: (Semi)-nonrelativistic limits of the Dirac eqaution with external time-dependent electromagnetic field. Commun. Math. Phys. 197, 405–425 (1998)CrossRefMATH
19.
go back to reference Bechouche, P., Mauser, N., Selberg, S.: On the asymptotic analysis of the Dirac–Maxwell system in the nonrelativistic limit. J. Hyper. Differ. Equat. 2, 129–182 (2005)MathSciNetCrossRefMATH Bechouche, P., Mauser, N., Selberg, S.: On the asymptotic analysis of the Dirac–Maxwell system in the nonrelativistic limit. J. Hyper. Differ. Equat. 2, 129–182 (2005)MathSciNetCrossRefMATH
21.
go back to reference Booth, H.S., Legg, G., Jarvis, P.D.: Algebraic solution for the vector potential in the Dirac equation. J. Phys. A: Math. Gen. 34, 5667–5677 (2001)MathSciNetCrossRefMATH Booth, H.S., Legg, G., Jarvis, P.D.: Algebraic solution for the vector potential in the Dirac equation. J. Phys. A: Math. Gen. 34, 5667–5677 (2001)MathSciNetCrossRefMATH
22.
go back to reference Bournaveas, N.: Local existence for the Maxwell–Dirac equations in three space dimensions. Commun. Part. Differ. Equ. 21, 693–720 (1996)MathSciNetCrossRefMATH Bournaveas, N.: Local existence for the Maxwell–Dirac equations in three space dimensions. Commun. Part. Differ. Equ. 21, 693–720 (1996)MathSciNetCrossRefMATH
23.
go back to reference Brinkman, D., Heitzinger, C., Markowich, P.A.: A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene. J. Comput. Phys. 257, 318–332 (2014)MathSciNetCrossRefMATH Brinkman, D., Heitzinger, C., Markowich, P.A.: A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene. J. Comput. Phys. 257, 318–332 (2014)MathSciNetCrossRefMATH
24.
go back to reference Cirincione, R.J., Chernoff, P.R.: Dirac and Klein Gordon equations: convergence of solutions in the nonrelativistic limit. Commun. Math. Phys. 79, 33–46 (1981)MathSciNetCrossRefMATH Cirincione, R.J., Chernoff, P.R.: Dirac and Klein Gordon equations: convergence of solutions in the nonrelativistic limit. Commun. Math. Phys. 79, 33–46 (1981)MathSciNetCrossRefMATH
25.
go back to reference Das, A.: General solutions of Maxwell–Dirac equations in 1 + 1 dimensional space-time and spatial confined solution. J. Math. Phys. 34, 3986–3999 (1993)MathSciNetCrossRefMATH Das, A.: General solutions of Maxwell–Dirac equations in 1 + 1 dimensional space-time and spatial confined solution. J. Math. Phys. 34, 3986–3999 (1993)MathSciNetCrossRefMATH
26.
27.
28.
go back to reference Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)CrossRefMATH Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)CrossRefMATH
29.
go back to reference Dirac, P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. A 126, 360–365 (1930)CrossRefMATH Dirac, P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. A 126, 360–365 (1930)CrossRefMATH
30.
go back to reference Dirac, P.A.M.: Principles of Quantum Mechanics. Oxford University Press, London (1958)MATH Dirac, P.A.M.: Principles of Quantum Mechanics. Oxford University Press, London (1958)MATH
31.
go back to reference Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps: applications to Dirac operator. J. Funct. Anal. 174, 208–226 (2000)MathSciNetCrossRefMATH Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps: applications to Dirac operator. J. Funct. Anal. 174, 208–226 (2000)MathSciNetCrossRefMATH
32.
go back to reference Esteban, M., Séré, E.: Existence and multiplicity of solutions for linear and nonlinear Dirac problems. Partial Differ. Equ. Appl. 12, 107–112 (1997)MathSciNetMATH Esteban, M., Séré, E.: Existence and multiplicity of solutions for linear and nonlinear Dirac problems. Partial Differ. Equ. Appl. 12, 107–112 (1997)MathSciNetMATH
33.
34.
go back to reference Faou, E., Schratz, K.: Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441–469 (2014)MathSciNetCrossRefMATH Faou, E., Schratz, K.: Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441–469 (2014)MathSciNetCrossRefMATH
35.
36.
go back to reference Fefferman, C.L., Weistein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)MathSciNetCrossRefMATH Fefferman, C.L., Weistein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)MathSciNetCrossRefMATH
37.
go back to reference Ferreira, A., Gomes, J.V., Nilsson, J., Mucciolo, E.R., Peres, N.M.R., Catro Neto, A.H.: Unified description of the dc-conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Phys. Rev. B 83, 165402 (2011)CrossRef Ferreira, A., Gomes, J.V., Nilsson, J., Mucciolo, E.R., Peres, N.M.R., Catro Neto, A.H.: Unified description of the dc-conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Phys. Rev. B 83, 165402 (2011)CrossRef
38.
go back to reference Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Resonantly enhanced pair production in a simple diatomic model. Phys. Rev. Lett. 110, 013002 (2013)CrossRef Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Resonantly enhanced pair production in a simple diatomic model. Phys. Rev. Lett. 110, 013002 (2013)CrossRef
39.
go back to reference Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry. J. Comput. Phys. 272, 559–587 (2014)MathSciNetCrossRefMATH Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry. J. Comput. Phys. 272, 559–587 (2014)MathSciNetCrossRefMATH
40.
go back to reference Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin \(1/2\) particles and its nonrelavistic limit. Phys. Rev. 78, 29–36 (1950)CrossRefMATH Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin \(1/2\) particles and its nonrelavistic limit. Phys. Rev. 78, 29–36 (1950)CrossRefMATH
41.
go back to reference Fushchich, W.I., Shtelen, W.M.: On some exact solutions of the nonlinear Dirac equation. J. Phys. A: Math. Gen. 16, 271–277 (1983)MathSciNetCrossRefMATH Fushchich, W.I., Shtelen, W.M.: On some exact solutions of the nonlinear Dirac equation. J. Phys. A: Math. Gen. 16, 271–277 (1983)MathSciNetCrossRefMATH
42.
go back to reference Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefMATH Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefMATH
43.
go back to reference Gérad, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50, 321–377 (1997)MathSciNetMATH Gérad, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50, 321–377 (1997)MathSciNetMATH
44.
go back to reference Gesztesy, F., Grosse, H., Thaller, B.: A rigorious approach to relativistic corrections of bound state energies for spin-\(1/2\) particles. Ann. Inst. Henri Poincaré Phys. Theor 40, 159–174 (1984)MATH Gesztesy, F., Grosse, H., Thaller, B.: A rigorious approach to relativistic corrections of bound state energies for spin-\(1/2\) particles. Ann. Inst. Henri Poincaré Phys. Theor 40, 159–174 (1984)MATH
45.
go back to reference Gosse, L.: A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numer. Math. 55, 433–458 (2015)MathSciNetCrossRefMATH Gosse, L.: A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numer. Math. 55, 433–458 (2015)MathSciNetCrossRefMATH
46.
go back to reference Grigore, D.R., Nenciu, G., Purice, R.: On the nonrelativistic limits of the Dirac Hamiltonian. Ann. Inst. Henri Poincaré Phys. Theor 51, 231–263 (1989)MathSciNetMATH Grigore, D.R., Nenciu, G., Purice, R.: On the nonrelativistic limits of the Dirac Hamiltonian. Ann. Inst. Henri Poincaré Phys. Theor 51, 231–263 (1989)MathSciNetMATH
48.
go back to reference Hammer, R., Pötz, W., Arnold, A.: Single-cone real-space finite difference scheme for the time-dependent Dirac equation. J. Comput. Phys. 265, 50–70 (2014)MathSciNetCrossRefMATH Hammer, R., Pötz, W., Arnold, A.: Single-cone real-space finite difference scheme for the time-dependent Dirac equation. J. Comput. Phys. 265, 50–70 (2014)MathSciNetCrossRefMATH
49.
go back to reference Hammer, R., Pötz, W., Arnold, A.: A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1 + 1)D. J. Comput. Phys. 256, 728–747 (2014)MathSciNetCrossRefMATH Hammer, R., Pötz, W., Arnold, A.: A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1 + 1)D. J. Comput. Phys. 256, 728–747 (2014)MathSciNetCrossRefMATH
50.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)CrossRefMATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)CrossRefMATH
51.
go back to reference Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 402–426 (1999)MathSciNetCrossRefMATH Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 402–426 (1999)MathSciNetCrossRefMATH
53.
go back to reference Huang, Z., Jin, S., Markowich, P.A., Sparber, C., Zheng, C.: A time-splitting spectral scheme for the Maxwell–Dirac system. J. Comput. Phys. 208, 761–789 (2005)MathSciNetCrossRefMATH Huang, Z., Jin, S., Markowich, P.A., Sparber, C., Zheng, C.: A time-splitting spectral scheme for the Maxwell–Dirac system. J. Comput. Phys. 208, 761–789 (2005)MathSciNetCrossRefMATH
54.
55.
go back to reference Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (2008)CrossRefMATH Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (2008)CrossRefMATH
56.
go back to reference Iserles, A., Norsett, S.P.: From high oscillation to rapid approximation I: modified Fourier expansions. IMA J. Numer. Anal. 28, 862–887 (2008)MathSciNetCrossRefMATH Iserles, A., Norsett, S.P.: From high oscillation to rapid approximation I: modified Fourier expansions. IMA J. Numer. Anal. 28, 862–887 (2008)MathSciNetCrossRefMATH
57.
58.
go back to reference Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)CrossRefMATH Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)CrossRefMATH
60.
go back to reference Mauser, N.J.: Rigorous derivation of the Pauli equation with time-dependent electromagnetic field. VLSI Design 9, 415–426 (1999)CrossRef Mauser, N.J.: Rigorous derivation of the Pauli equation with time-dependent electromagnetic field. VLSI Design 9, 415–426 (1999)CrossRef
62.
go back to reference Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of the graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of the graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
63.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRef
64.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric filed effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric filed effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
65.
go back to reference Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007)CrossRef Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007)CrossRef
66.
go back to reference Nraun, J.W., Su, Q., Grobe, R.: Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59, 604–612 (1999)CrossRef Nraun, J.W., Su, Q., Grobe, R.: Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59, 604–612 (1999)CrossRef
67.
go back to reference Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules absorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules absorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef
68.
70.
go back to reference Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)MATH Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)MATH
71.
go back to reference Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)MATH Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)MATH
72.
go back to reference Spohn, H.: Semiclassical limit of the Dirac equaiton and spin precession. Ann. Phys. 282, 420–431 (2000)CrossRefMATH Spohn, H.: Semiclassical limit of the Dirac equaiton and spin precession. Ann. Phys. 282, 420–431 (2000)CrossRefMATH
73.
go back to reference Strang, G.: On the construction and comparision of difference schemes. SIAM J. Numer. Anal. 5, 505–517 (1968)CrossRef Strang, G.: On the construction and comparision of difference schemes. SIAM J. Numer. Anal. 5, 505–517 (1968)CrossRef
75.
go back to reference Veselic, K.: Perturbation of pseudoresolvents and analyticity in \(1/c\) ofrelativistic quantum mechanics. Commun. Math. Phys. 22, 27–43 (1971)CrossRefMATH Veselic, K.: Perturbation of pseudoresolvents and analyticity in \(1/c\) ofrelativistic quantum mechanics. Commun. Math. Phys. 22, 27–43 (1971)CrossRefMATH
76.
go back to reference White, G.B.: Splitting of the Dirac operator in the nonrelativistic limit. Ann. Inst. Henri Poincaré 53, 109–121 (1990)MathSciNetMATH White, G.B.: Splitting of the Dirac operator in the nonrelativistic limit. Ann. Inst. Henri Poincaré 53, 109–121 (1990)MathSciNetMATH
77.
go back to reference Wu, H., Huang, Z., Jin, S., Yin, D.: Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10, 1301–1315 (2012)MathSciNetCrossRefMATH Wu, H., Huang, Z., Jin, S., Yin, D.: Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10, 1301–1315 (2012)MathSciNetCrossRefMATH
Metadata
Title
Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime
Authors
Weizhu Bao
Yongyong Cai
Xiaowei Jia
Qinglin Tang
Publication date
18-01-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0333-3

Other articles of this Issue 3/2017

Journal of Scientific Computing 3/2017 Go to the issue

Premium Partner