Skip to main content
Top
Published in: Numerical Algorithms 3/2020

20-12-2019 | Original Paper

Numerical methods based on the Floater–Hormann interpolants for stiff VIEs

Authors: Ali Abdi, Seyyed Ahmad Hosseini, Helmut Podhaisky

Published in: Numerical Algorithms | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Floater–Hormann family of the barycentric rational interpolants has recently gained popularity because of its excellent stability properties and highly order of convergence. The purpose of this paper is to design highly accurate and stable schemes based on this family of interpolants for the numerical solution of stiff Volterra integral equations of the second kind.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdi, A.: General linear methods with large stability regions for Volterra integral equations. Comp. Appl. Math. 38(52), 1–16 (2019)MathSciNetMATH Abdi, A.: General linear methods with large stability regions for Volterra integral equations. Comp. Appl. Math. 38(52), 1–16 (2019)MathSciNetMATH
2.
go back to reference Abdi, A., Berrut, J.-P., Hosseini, S. A.: The linear barycentric rational method for a class of delay Volterra integro-differential equations. J. Sci. Comput. 75, 1757–1775 (2018)MathSciNetCrossRef Abdi, A., Berrut, J.-P., Hosseini, S. A.: The linear barycentric rational method for a class of delay Volterra integro-differential equations. J. Sci. Comput. 75, 1757–1775 (2018)MathSciNetCrossRef
3.
go back to reference Abdi, A., Fazeli, S., Hojjati, G.: Construction of efficient general linear methods for stiff Volterra integral equations. J. Comput. Appl. Math. 292, 417–429 (2016)MathSciNetCrossRef Abdi, A., Fazeli, S., Hojjati, G.: Construction of efficient general linear methods for stiff Volterra integral equations. J. Comput. Appl. Math. 292, 417–429 (2016)MathSciNetCrossRef
4.
go back to reference Abdi, A., Hosseini, S. A.: The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations. SIAM J. Sci. Comput. 40, A1936–A1960 (2018)MathSciNetCrossRef Abdi, A., Hosseini, S. A.: The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations. SIAM J. Sci. Comput. 40, A1936–A1960 (2018)MathSciNetCrossRef
5.
go back to reference Abdi, A., Hosseini, S.A., Podhaisky, H.: Adaptive linear barycentric rational finite differences method for stiff ODEs. J. Comput. Appl. Math. 357, 204–214 (2019)MathSciNetCrossRef Abdi, A., Hosseini, S.A., Podhaisky, H.: Adaptive linear barycentric rational finite differences method for stiff ODEs. J. Comput. Appl. Math. 357, 204–214 (2019)MathSciNetCrossRef
6.
go back to reference Baker, C. T. H., Keech, M. S.: Stability regions in the numerical treatment of Volterra integral equations. SIAM J. Numer. Anal. 15, 394–417 (1978)MathSciNetCrossRef Baker, C. T. H., Keech, M. S.: Stability regions in the numerical treatment of Volterra integral equations. SIAM J. Numer. Anal. 15, 394–417 (1978)MathSciNetCrossRef
7.
go back to reference Battles, Z., Trefethen, L. N.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)MathSciNetCrossRef Battles, Z., Trefethen, L. N.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)MathSciNetCrossRef
8.
go back to reference Berrut, J. -P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)MathSciNetCrossRef Berrut, J. -P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)MathSciNetCrossRef
9.
go back to reference Berrut, J. -P.: Linear barycentric rational interpolation with guaranteed degree of exactness. In: Fasshauer, G.E., Schumaker, L.L. (eds.) Approximation Theory XV: San Antonio 2016, Springer Proceedings in Mathematics & Statistics, 1–20 (2017) Berrut, J. -P.: Linear barycentric rational interpolation with guaranteed degree of exactness. In: Fasshauer, G.E., Schumaker, L.L. (eds.) Approximation Theory XV: San Antonio 2016, Springer Proceedings in Mathematics & Statistics, 1–20 (2017)
10.
go back to reference Berrut, J. -P., Hosseini, S. A., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36, A105–A123 (2014)MathSciNetCrossRef Berrut, J. -P., Hosseini, S. A., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36, A105–A123 (2014)MathSciNetCrossRef
13.
go back to reference Blom, J. G., Brunner, H.: The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods. SIAM J. Sci. Stat. Comput. 8, 806–830 (1987)MathSciNetCrossRef Blom, J. G., Brunner, H.: The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods. SIAM J. Sci. Stat. Comput. 8, 806–830 (1987)MathSciNetCrossRef
14.
go back to reference Brunner, H.: Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge (2004)CrossRef Brunner, H.: Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge (2004)CrossRef
15.
go back to reference Brunner, H., Nørsett, S.P., Wolkenfelt, P.H.M.: On V0-stability of numerical methods for Volterra integral equations of the second kind. Report NW84/80. Mathematish Centrum, Amsterdam (1980) Brunner, H., Nørsett, S.P., Wolkenfelt, P.H.M.: On V0-stability of numerical methods for Volterra integral equations of the second kind. Report NW84/80. Mathematish Centrum, Amsterdam (1980)
16.
go back to reference Brunner, H., van der Houwen, P. J.: The numerical solution of Volterra equations. CWI Monographs, North-Holland (1986)MATH Brunner, H., van der Houwen, P. J.: The numerical solution of Volterra equations. CWI Monographs, North-Holland (1986)MATH
17.
go back to reference Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT 47, 259–275 (2007)MathSciNetCrossRef Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT 47, 259–275 (2007)MathSciNetCrossRef
18.
go back to reference Conte, D., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for Volterra integral equations. Appl. Math. Comput. 204, 839–853 (2008)MathSciNetMATH Conte, D., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for Volterra integral equations. Appl. Math. Comput. 204, 839–853 (2008)MathSciNetMATH
19.
go back to reference Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)MathSciNetCrossRef Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)MathSciNetCrossRef
20.
go back to reference Floater, M. S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)MathSciNetCrossRef Floater, M. S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)MathSciNetCrossRef
21.
go back to reference Guttel, S., Klein, G.: Convergence of linear barycentric rational interpolation for analytic functions. SIAM J. Numer. Anal. 50, 2560–2580 (2012)MathSciNetCrossRef Guttel, S., Klein, G.: Convergence of linear barycentric rational interpolation for analytic functions. SIAM J. Numer. Anal. 50, 2560–2580 (2012)MathSciNetCrossRef
22.
go back to reference Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985)MathSciNetCrossRef Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985)MathSciNetCrossRef
23.
go back to reference Henrici, P.: Essentials of Numerical Analysis. John Wiley, New York (1982)MATH Henrici, P.: Essentials of Numerical Analysis. John Wiley, New York (1982)MATH
24.
go back to reference Hetcote, H. W., Tudor, D. W.: Integral equation models for endemic infectious diseases. J. Math. Biol. 9, 37–47 (1980)MathSciNetCrossRef Hetcote, H. W., Tudor, D. W.: Integral equation models for endemic infectious diseases. J. Math. Biol. 9, 37–47 (1980)MathSciNetCrossRef
25.
go back to reference Hoppensteadt, F. C., Jackiewicz, Z., Zubik-Kowal, B.: Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels. BIT 47, 325–350 (2007)MathSciNetCrossRef Hoppensteadt, F. C., Jackiewicz, Z., Zubik-Kowal, B.: Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels. BIT 47, 325–350 (2007)MathSciNetCrossRef
26.
go back to reference Hosseini, S. A., Abdi, A.: On the numerical stability of the linear barycentric rational quadrature method for Volterra integral equations. Appl. Numer. Math. 100, 1–13 (2016)MathSciNetCrossRef Hosseini, S. A., Abdi, A.: On the numerical stability of the linear barycentric rational quadrature method for Volterra integral equations. Appl. Numer. Math. 100, 1–13 (2016)MathSciNetCrossRef
27.
go back to reference Izzo, G., Jackiewicz, Z., Messina, E., Vecchio, A.: General linear methods for Volterra integral equations. J. Comput. Appl. Math. 234, 2768–2782 (2010)MathSciNetCrossRef Izzo, G., Jackiewicz, Z., Messina, E., Vecchio, A.: General linear methods for Volterra integral equations. J. Comput. Appl. Math. 234, 2768–2782 (2010)MathSciNetCrossRef
28.
go back to reference Izzo, G., Russo, E., Chiapparelli, C.: Highly stable Runge–Kutta methods for Volterra integral equations. Appl. Numer. Math. 62, 1002–1013 (2012)MathSciNetCrossRef Izzo, G., Russo, E., Chiapparelli, C.: Highly stable Runge–Kutta methods for Volterra integral equations. Appl. Numer. Math. 62, 1002–1013 (2012)MathSciNetCrossRef
29.
go back to reference Klein, G.: Applications of Linear Barycentric Rational Interpolation. University of Fribourg, PhD thesis (2012)MATH Klein, G.: Applications of Linear Barycentric Rational Interpolation. University of Fribourg, PhD thesis (2012)MATH
31.
go back to reference Klein, G., Berrut, J. -P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)MathSciNetCrossRef Klein, G., Berrut, J. -P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)MathSciNetCrossRef
32.
go back to reference Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)CrossRef Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)CrossRef
33.
go back to reference Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)MathSciNetMATH Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)MathSciNetMATH
36.
go back to reference van der Houwen, P. J., te Riele, H. J. J.: Backward differentiation type formulas for Volterra integral equations of the second kind. Numer. Math. 37, 205–217 (1981)MathSciNetCrossRef van der Houwen, P. J., te Riele, H. J. J.: Backward differentiation type formulas for Volterra integral equations of the second kind. Numer. Math. 37, 205–217 (1981)MathSciNetCrossRef
Metadata
Title
Numerical methods based on the Floater–Hormann interpolants for stiff VIEs
Authors
Ali Abdi
Seyyed Ahmad Hosseini
Helmut Podhaisky
Publication date
20-12-2019
Publisher
Springer US
Published in
Numerical Algorithms / Issue 3/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00841-4

Other articles of this Issue 3/2020

Numerical Algorithms 3/2020 Go to the issue

Premium Partner