Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 3/2023

13-04-2023 | Original Research Article

Numerical Simulation of Particle Transport Phenomenon in Steelmaking Converter With Bottom Powder Injection Based on Eulerian-Multifluid VOF-Granular Flow Model

Authors: Jingshi Zhang, Wentao Lou, Miaoyong Zhu

Published in: Metallurgical and Materials Transactions B | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-efficiency converter steelmaking is still a hot topic in steel industry. In the present work, a coupled Eulerian-multifluid VOF-granular flow model was developed to study the particle transport phenomenon in top–bottom-blown converter with bottom powder injection, and effect of the bubble-induced turbulence and solids shear stresses on particle transport phenomenon in converter are investigated. Simulation results were compared with experimental data obtained by high-speed camera and particle concentration meter to verify accuracy of the model. The fundamental phenomena such as motion and distribution of particle are described satisfactorily, and the effects of bubble-induced turbulence and solids shear stresses on distributions of particle concentration and velocity and liquid turbulent energy are evaluated. The results show that granular kinetic viscosity has a significant effect on prediction of particle volume fraction, in which particle concentration is predicted successfully with Gidaspow model. Granular bulk viscosity and frictional viscosity dominate the particle transport behavior in free motion region, and frictional pressure correction factor Cfr, which indicates fraction of effective particle frictional pressure, should be 0.9. Radial distribution function affects simulation results, especially in dense region of particle concentration distribution, and Lun model obtains the best agreement with experimental data. Bubble-induced turbulence affects particle distribution and can predict particle volume fraction more accurately.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Lv, S.P. Chen, L.Z. Yang, and G.S. Wei: Metals, 2022, vol. 12, pp. 1918–33.CrossRef M. Lv, S.P. Chen, L.Z. Yang, and G.S. Wei: Metals, 2022, vol. 12, pp. 1918–33.CrossRef
2.
3.
4.
go back to reference G. Wimmer, K. Pastucha, and E. Wimmer: in The 6th International Congress on the Science and Technology of Steelmaking, ICS, Beijing, 2015, pp. 140–42. G. Wimmer, K. Pastucha, and E. Wimmer: in The 6th International Congress on the Science and Technology of Steelmaking, ICS, Beijing, 2015, pp. 140–42.
5.
go back to reference K. Yoshiei, S. Toshikazu, F. Tetsuya, and N. Hiroshi: ISIJ Int., vol. 28, pp. 746–53. K. Yoshiei, S. Toshikazu, F. Tetsuya, and N. Hiroshi: ISIJ Int., vol. 28, pp. 746–53.
6.
go back to reference P. Gittler, R. Kickinger, S. Pirker, E. Fuhrmann, J. Lehner, and J. Steins: Scand. J. Metall., 2000, vol. 29, pp. 166–76.CrossRef P. Gittler, R. Kickinger, S. Pirker, E. Fuhrmann, J. Lehner, and J. Steins: Scand. J. Metall., 2000, vol. 29, pp. 166–76.CrossRef
7.
go back to reference A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, and R.I.L. Guthrie: ISIJ Int., 2004, vol. 44, pp. 1639–45.CrossRef A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, and R.I.L. Guthrie: ISIJ Int., 2004, vol. 44, pp. 1639–45.CrossRef
8.
go back to reference A. Nordquist, N. Kumbhat, L. Jonsson, and P. Jonsson: Steel Res. Int., 2006, vol. 77, pp. 82–90.CrossRef A. Nordquist, N. Kumbhat, L. Jonsson, and P. Jonsson: Steel Res. Int., 2006, vol. 77, pp. 82–90.CrossRef
9.
go back to reference K.Y. Chu, H.H. Chen, P.H. Lai, H.C. Wu, Y.C. Liu, C.C. Lin, and M.J. Lu: Metall. Trans. B, 2016, vol. 47, pp. 948–62.CrossRef K.Y. Chu, H.H. Chen, P.H. Lai, H.C. Wu, Y.C. Liu, C.C. Lin, and M.J. Lu: Metall. Trans. B, 2016, vol. 47, pp. 948–62.CrossRef
10.
go back to reference Q. Li, M. Li, S. Kuang, and Z. Zou: Metall. Trans. B, 2015, vol. 46, pp. 1494–1509.CrossRef Q. Li, M. Li, S. Kuang, and Z. Zou: Metall. Trans. B, 2015, vol. 46, pp. 1494–1509.CrossRef
11.
go back to reference J.K. Sun, J.S. Zhang, W.H. Lin, L.L. Cao, X.M. Feng, and Q. Liu: Steel Res. Int., 2021, vol. 92, pp. 2100178–79.CrossRef J.K. Sun, J.S. Zhang, W.H. Lin, L.L. Cao, X.M. Feng, and Q. Liu: Steel Res. Int., 2021, vol. 92, pp. 2100178–79.CrossRef
12.
go back to reference N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: Steel Res. Int., 2011, vol. 82, pp. 587–94.CrossRef N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: Steel Res. Int., 2011, vol. 82, pp. 587–94.CrossRef
13.
go back to reference L.L. Cao, Q. Liu, Z. Wang, and N. Li: Ironmak. Steelmak., 2016, vol. 45, pp. 239–48.CrossRef L.L. Cao, Q. Liu, Z. Wang, and N. Li: Ironmak. Steelmak., 2016, vol. 45, pp. 239–48.CrossRef
14.
go back to reference O. Olivares, A. Elias, R. Sanchez, M. Diaz-Cruz, and R.D. Morales: Steel Res. Int., 2002, vol. 73, pp. 44–51.CrossRef O. Olivares, A. Elias, R. Sanchez, M. Diaz-Cruz, and R.D. Morales: Steel Res. Int., 2002, vol. 73, pp. 44–51.CrossRef
15.
go back to reference X. Zhou, M. Ersson, L. Zhong, and P. Jönsson: Metall. Trans. B, 2015, vol. 47, pp. 434–45.CrossRef X. Zhou, M. Ersson, L. Zhong, and P. Jönsson: Metall. Trans. B, 2015, vol. 47, pp. 434–45.CrossRef
16.
17.
go back to reference X. Zhou, Y. Liu, P. Ni, and S. Peng: Steel Res. Int., 2020, vol. 92, pp. 2000334–42.CrossRef X. Zhou, Y. Liu, P. Ni, and S. Peng: Steel Res. Int., 2020, vol. 92, pp. 2000334–42.CrossRef
18.
go back to reference Y. Li, W.T. Lou, and M.Y. Zhu: Ironmak. Steelmak., 2013, vol. 40, pp. 505–14.CrossRef Y. Li, W.T. Lou, and M.Y. Zhu: Ironmak. Steelmak., 2013, vol. 40, pp. 505–14.CrossRef
19.
go back to reference H.J. Odenthal, U. Falkenreck, and J. Schlüter: in European Conference on Computational Fluid Dynamics. P. Wesseling, E. Oñate, and J. Périaux, eds., Delft University of Technology, Delft, 2006. H.J. Odenthal, U. Falkenreck, and J. Schlüter: in European Conference on Computational Fluid Dynamics. P. Wesseling, E. Oñate, and J. Périaux, eds., Delft University of Technology, Delft, 2006.
20.
go back to reference V. Singh, J. Kumar, C. Bhanu, S.K. Ajmani, and S.K. Dash: ISIJ Int., 2007, vol. 47, pp. 1605–12.CrossRef V. Singh, J. Kumar, C. Bhanu, S.K. Ajmani, and S.K. Dash: ISIJ Int., 2007, vol. 47, pp. 1605–12.CrossRef
21.
go back to reference S. Hu, R. Zhu, K. Dong, R. Liu, and N. Jiang: Metall. Res. Technol., 2018, vol. 115, pp. 511–22.CrossRef S. Hu, R. Zhu, K. Dong, R. Liu, and N. Jiang: Metall. Res. Technol., 2018, vol. 115, pp. 511–22.CrossRef
22.
go back to reference M. Li, L. Li, L. Shao, Q. Li, Z. Zou, and B. Li: Metall. Trans. B, 2021, vol. 52, pp. 1034–51.CrossRef M. Li, L. Li, L. Shao, Q. Li, Z. Zou, and B. Li: Metall. Trans. B, 2021, vol. 52, pp. 1034–51.CrossRef
23.
go back to reference S. Hu, R. Zhu, D. Wang, X. Li, and G. Wei: Metall. Trans. B, 2021, vol. 52, pp. 3875–87.CrossRef S. Hu, R. Zhu, D. Wang, X. Li, and G. Wei: Metall. Trans. B, 2021, vol. 52, pp. 3875–87.CrossRef
24.
go back to reference B. Tang, X. Wang, Z. Zou, and A. Yu: Can. Metall. Q., 2016, vol. 55, pp. 124–30.CrossRef B. Tang, X. Wang, Z. Zou, and A. Yu: Can. Metall. Q., 2016, vol. 55, pp. 124–30.CrossRef
25.
go back to reference W. Li, R. Zhu, K. Dong, J. Zhang, C. Feng, B. Han, and X. Wu: Metall. Trans. B, 2020, vol. 51, pp. 1060–69.CrossRef W. Li, R. Zhu, K. Dong, J. Zhang, C. Feng, B. Han, and X. Wu: Metall. Trans. B, 2020, vol. 51, pp. 1060–69.CrossRef
26.
go back to reference J. Zhang, W. Lou, P. Shao, and M. Zhu: Metall. Trans. B, 2022, vol. 53, pp. 3585–3601.CrossRef J. Zhang, W. Lou, P. Shao, and M. Zhu: Metall. Trans. B, 2022, vol. 53, pp. 3585–3601.CrossRef
27.
go back to reference M. Akhlaghi, V. Mohammadi, N.M. Nouri, M. Taherkhani, and M. Karimi: Chem. Eng. Res. Des., 2019, vol. 152, pp. 48–59.CrossRef M. Akhlaghi, V. Mohammadi, N.M. Nouri, M. Taherkhani, and M. Karimi: Chem. Eng. Res. Des., 2019, vol. 152, pp. 48–59.CrossRef
28.
go back to reference A. Kumar, D. Ghosh, and S. Ghosh: J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, pp. 572–602.CrossRef A. Kumar, D. Ghosh, and S. Ghosh: J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, pp. 572–602.CrossRef
29.
go back to reference H. Liu, W. Zhang, M. Jia, Y. Yan, and Y. He: Comput. Fluids, 2018, vol. 177, pp. 20–32.CrossRef H. Liu, W. Zhang, M. Jia, Y. Yan, and Y. He: Comput. Fluids, 2018, vol. 177, pp. 20–32.CrossRef
30.
31.
go back to reference O.Y. Shonibare and K.E. Wardle: Int. J. Chem. Eng., 2015, vol. 2015, pp. 1–14.CrossRef O.Y. Shonibare and K.E. Wardle: Int. J. Chem. Eng., 2015, vol. 2015, pp. 1–14.CrossRef
32.
go back to reference M. Sano and K. Mori: Tetsu to Hagane-J Iron Steel Inst. Jpn, 1976, vol. 17, pp. 344–52. M. Sano and K. Mori: Tetsu to Hagane-J Iron Steel Inst. Jpn, 1976, vol. 17, pp. 344–52.
33.
go back to reference FLUENT, Inc.: R1 Fluent Theory Guide, FLUENT, Inc., Lebanon, 2021, p. 2021. FLUENT, Inc.: R1 Fluent Theory Guide, FLUENT, Inc., Lebanon, 2021, p. 2021.
34.
go back to reference A.D. Burns, T. Frank, I. Hamill, and J.M. Shi: In 5th International Conference on Multiphase Flow, ICMF, 2004, pp 1–17. A.D. Burns, T. Frank, I. Hamill, and J.M. Shi: In 5th International Conference on Multiphase Flow, ICMF, 2004, pp 1–17.
35.
go back to reference S. Vun, J. Naser, and P. Witt: Powder Technol., 2010, vol. 204, pp. 11–20.CrossRef S. Vun, J. Naser, and P. Witt: Powder Technol., 2010, vol. 204, pp. 11–20.CrossRef
36.
go back to reference B. Buck and S. Heinrich: Adv. Powder Technol., 2019, vol. 30, pp. 3241–52.CrossRef B. Buck and S. Heinrich: Adv. Powder Technol., 2019, vol. 30, pp. 3241–52.CrossRef
37.
go back to reference M.F. Rahaman, A.R. Sarhan, and J. Naser: Powder Technol., 2020, vol. 360, pp. 780–88.CrossRef M.F. Rahaman, A.R. Sarhan, and J. Naser: Powder Technol., 2020, vol. 360, pp. 780–88.CrossRef
38.
go back to reference X.X. Jiang, S.Y. Wang, Q.H. Zhang, B.L. Shao, and H.L. Lu: Powder Technol., 2021, vol. 394, pp. 825–37.CrossRef X.X. Jiang, S.Y. Wang, Q.H. Zhang, B.L. Shao, and H.L. Lu: Powder Technol., 2021, vol. 394, pp. 825–37.CrossRef
39.
go back to reference M. Syamlal, W. Rogers, and T.J. O’Brien: Technical Report DOE/METC-94/1004, 1993. M. Syamlal, W. Rogers, and T.J. O’Brien: Technical Report DOE/METC-94/1004, 1993.
40.
go back to reference D. Gidaspow, R. Bezburuah, and J. Ding: In Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, 1992, pp 75–82. D. Gidaspow, R. Bezburuah, and J. Ding: In Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, 1992, pp 75–82.
42.
43.
go back to reference C.K.K. Lun, S.B. Savage, D.J. Jeffrey, and N. Chepurniy: J. Fluid Mech., 2006, vol. 140, pp. 223–56.CrossRef C.K.K. Lun, S.B. Savage, D.J. Jeffrey, and N. Chepurniy: J. Fluid Mech., 2006, vol. 140, pp. 223–56.CrossRef
44.
45.
46.
47.
48.
go back to reference J.S. Zhang, W.T. Lou, and M.Y. Zhu: J. Iron Steel Res. Int., 2022, vol. 29, pp. 1771–88.CrossRef J.S. Zhang, W.T. Lou, and M.Y. Zhu: J. Iron Steel Res. Int., 2022, vol. 29, pp. 1771–88.CrossRef
49.
go back to reference D.J. Parker, A.E. Dijkstra, T.W. Martin, and J.P.K. Seville: Chem. Eng. Sci., 1997, vol. 52, pp. 2011–22.CrossRef D.J. Parker, A.E. Dijkstra, T.W. Martin, and J.P.K. Seville: Chem. Eng. Sci., 1997, vol. 52, pp. 2011–22.CrossRef
50.
go back to reference A.N. Huang and H.P. Kuo: Adv. Powder Technol., 2017, vol. 28, pp. 2094–2101.CrossRef A.N. Huang and H.P. Kuo: Adv. Powder Technol., 2017, vol. 28, pp. 2094–2101.CrossRef
Metadata
Title
Numerical Simulation of Particle Transport Phenomenon in Steelmaking Converter With Bottom Powder Injection Based on Eulerian-Multifluid VOF-Granular Flow Model
Authors
Jingshi Zhang
Wentao Lou
Miaoyong Zhu
Publication date
13-04-2023
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 3/2023
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-023-02772-x

Other articles of this Issue 3/2023

Metallurgical and Materials Transactions B 3/2023 Go to the issue

Premium Partners