Skip to main content
Top
Published in: Strength of Materials 5/2019

03-12-2019

Numerical Simulation of the Stress-Strain State of the Rocket Retention Module

Authors: M. A. Degtyarev, K. V. Avramov

Published in: Strength of Materials | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper considers the thermal stress state of the module for retaining the rocket during firing. The high-temperature gas flow leaves the cruise propulsion system and flows around the retention module. As a result, it heats up. The temperature field, which is nonstationary with large gradients, causes the elastoplastic deformation of the structure. A procedure is proposed to determine the stress-strain state, which consists of two stages. In the first stage, the temperature field of the retention module is calculated. To this end, the high-temperature supersonic flow leaving the cruise propulsion system is numerically investigated. The flow parameters are used in a semiempirical procedure, by which the temperature field in the retention module is determined. At the second stage, the stress-strain state caused by the temperature field is calculated. The elastoplastic deformation of the material is described by a bilinear deformation curve and is calculated by the finite element method, which is implemented in the ANSYS software. As a result of a numerical simulation, it has been found that the most dangerous stress state is observed in the lower part of longitudinal reinforcement, where plastic strains occur.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Elhefny and G. Liang, “Stress and deformation of rocket gas turbine disc under different loads using finite element modeling,” Propuls. Power Res., 2, No. 1, 38–49 (2013).CrossRef A. Elhefny and G. Liang, “Stress and deformation of rocket gas turbine disc under different loads using finite element modeling,” Propuls. Power Res., 2, No. 1, 38–49 (2013).CrossRef
2.
go back to reference N. Perakis and O. J. Haidn, “Inverse heat transfer method applied to capacitively cooled rocket thrust chambers,” Int. J. Heat Mass Tran., 131, 150–166 (2019).CrossRef N. Perakis and O. J. Haidn, “Inverse heat transfer method applied to capacitively cooled rocket thrust chambers,” Int. J. Heat Mass Tran., 131, 150–166 (2019).CrossRef
3.
go back to reference N. Yilmaz, F. Vigil, J. Height, et al., “Rocket motor exhaust thermal environment characterization,” Measurement, 122, 312–319 (2018).CrossRef N. Yilmaz, F. Vigil, J. Height, et al., “Rocket motor exhaust thermal environment characterization,” Measurement, 122, 312–319 (2018).CrossRef
4.
go back to reference M. Jafari and M. Jafari, “Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method,” Eur. J. Mech. A-Solid., 73, 212– 223 (2019).CrossRef M. Jafari and M. Jafari, “Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method,” Eur. J. Mech. A-Solid., 73, 212– 223 (2019).CrossRef
5.
go back to reference J. Song and B. Sun, “Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX/Methane rocket engines,” Chinese J. Aeronaut., 30, 1043–1053 (2017).CrossRef J. Song and B. Sun, “Thermal-structural analysis of regeneratively cooled thrust chamber wall in reusable LOX/Methane rocket engines,” Chinese J. Aeronaut., 30, 1043–1053 (2017).CrossRef
6.
go back to reference V. Ramanjaneyulu, V. B. Murthy, R. C. Mohan, and Ch. N. Raju, “Analysis of composite rocket motor case using finite element method,” Mater. Today Proc., 5, No. 2, 4920–4929 (2018).CrossRef V. Ramanjaneyulu, V. B. Murthy, R. C. Mohan, and Ch. N. Raju, “Analysis of composite rocket motor case using finite element method,” Mater. Today Proc., 5, No. 2, 4920–4929 (2018).CrossRef
7.
go back to reference F. Xu, R. Abdelmoula, and M. Potier-Ferry, “On the buckling and post-buckling of core-shell cylinders under thermal loading,” Int. J. Solids Struct., 126–127, 17–36 (2017).CrossRef F. Xu, R. Abdelmoula, and M. Potier-Ferry, “On the buckling and post-buckling of core-shell cylinders under thermal loading,” Int. J. Solids Struct., 126–127, 17–36 (2017).CrossRef
8.
go back to reference Z. Wang, Q. Han, D. H. Nash, et al., “Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method,” Mech. Res. Commun., 92, 74–80 (2018).CrossRef Z. Wang, Q. Han, D. H. Nash, et al., “Thermal buckling of cylindrical shell with temperature-dependent material properties: Conventional theoretical solution and new numerical method,” Mech. Res. Commun., 92, 74–80 (2018).CrossRef
9.
go back to reference N. D. Duc, “Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory,” Eur. J. Mech. A-Solid., 58, 10–30 (2016).CrossRef N. D. Duc, “Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory,” Eur. J. Mech. A-Solid., 58, 10–30 (2016).CrossRef
10.
go back to reference S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, “A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells,” Eng. Struct., 178, 444–459 (2019).CrossRef S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, “A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells,” Eng. Struct., 178, 444–459 (2019).CrossRef
11.
go back to reference M. C. Trinh and S. E. Kim, “Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment,” Aerosp. Sci. Technol., 84, 672–685 (2019).CrossRef M. C. Trinh and S. E. Kim, “Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment,” Aerosp. Sci. Technol., 84, 672–685 (2019).CrossRef
12.
go back to reference L. G. Loitsyanskii, Mechanics of Fluids [in Russian], Drofa, Moscow (2003). L. G. Loitsyanskii, Mechanics of Fluids [in Russian], Drofa, Moscow (2003).
13.
go back to reference B. E. Launder and B. I. Sharma, “Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc,” Lett. Heat Mass Trans., 1, No. 2, 131–138 (1974).CrossRef B. E. Launder and B. I. Sharma, “Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc,” Lett. Heat Mass Trans., 1, No. 2, 131–138 (1974).CrossRef
14.
go back to reference M. A. Mikheev and I. M. Mikheeva, Fundamentals of Heat Transfer [in Russian], Énergiya, Moscow (1977). M. A. Mikheev and I. M. Mikheeva, Fundamentals of Heat Transfer [in Russian], Énergiya, Moscow (1977).
15.
go back to reference N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1968). N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1968).
Metadata
Title
Numerical Simulation of the Stress-Strain State of the Rocket Retention Module
Authors
M. A. Degtyarev
K. V. Avramov
Publication date
03-12-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 5/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00119-z

Other articles of this Issue 5/2019

Strength of Materials 5/2019 Go to the issue

Premium Partners