Skip to main content
Top
Published in: Strength of Materials 5/2019

04-12-2019

Development of Graphene Nanoplatelets-Reinforced Thermo-Responsive Shape Memory Nanocomposites for High Recovery Force Applications

Authors: R. Kumar Gupta, S. A. R. Hashmi, S. Verma, A. Naik

Published in: Strength of Materials | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development and large-scale implementation of multifunctional advanced materials with smart and intelligent properties like shape memory are very topical. In the present work, we report the development of multifunctional graphene nanoplatelets (GNPs)-reinforced thermo-responsive shape memory composites, in ether type shape memory polyurethane (SMPU) matrix. A unique twin screw co-rotating microcompounder with a back flow channel was operated to ensure proper dispersion of GNPs in the SMPU matrix for developing different compositions of nanocomposites, namely SMC0, SMC1, SMC2, and SMC3, respectively. The detailed characterizations and properties of the above developed nanocomposites were studied using various complementary techniques for spectroscopy, morphology, mechanical, thermal, shape memory, DMA, etc. The dynamic thermomechanical properties of all the developed nanocomposites were studied at 0.1 and 10 Hz, respectively. Structure of SMP and developed composite were also analyzed using various spectroscopic methods. The addition of GNPs to the SMP matrix improved the mechanical and shape memory properties, although a noticeable impact on thermal property is also reported. The fractured microphotographs reveal the uniform dispersion of GNP in SMPU. Addition of 1 phr GNPs increased storage modulus of SMPU from 3.14 to 4.11 GPa and the value of tan δ peak was decreased from 0.81 to 0.53, respectively. The GNPs in SMPU matrix influences the shape recovery, which is improved with the addition of GNPs in the experimental range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. A. R. Hashmi, H. C. Prasad, R. Abishera, et al., “Improved recovery stress in multi-walled-carbonnanotubes reinforced polyurethane,” Mater. Design, 67, 492–500 (2015).CrossRef S. A. R. Hashmi, H. C. Prasad, R. Abishera, et al., “Improved recovery stress in multi-walled-carbonnanotubes reinforced polyurethane,” Mater. Design, 67, 492–500 (2015).CrossRef
2.
go back to reference Y. Wu, J. Hu, C. Zhang, et al., “A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer,” J. Mater. Chem. A, 3, No. 1, 97–100 (2015). Y. Wu, J. Hu, C. Zhang, et al., “A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer,” J. Mater. Chem. A, 3, No. 1, 97–100 (2015).
3.
go back to reference E. Pieczyska, M. Staszczak, M. Maj, et al., “Investigation of thermal effects accompanying tensile deformation of Shape Memory Polymer PU-SMP,” Meas. Automat. Monitor., 61, No. 6, 203–205 (2015). E. Pieczyska, M. Staszczak, M. Maj, et al., “Investigation of thermal effects accompanying tensile deformation of Shape Memory Polymer PU-SMP,” Meas. Automat. Monitor., 61, No. 6, 203–205 (2015).
4.
go back to reference C. D. Eisenbach, “Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect,” Polymer, 21, No. 10, 1175–1179 (1980). C. D. Eisenbach, “Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect,” Polymer, 21, No. 10, 1175–1179 (1980).
5.
go back to reference H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett., 87, No. 1, 015501 (2001). H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett., 87, No. 1, 015501 (2001).
6.
go back to reference B. Yang, W. Huang, C. Li, and L. Li, “Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer,” Polymer, 47, No. 4, 1348–1356 (2006). B. Yang, W. Huang, C. Li, and L. Li, “Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer,” Polymer, 47, No. 4, 1348–1356 (2006).
7.
go back to reference W. Wang, D. Liu, Y. Liu, et al., “Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites,” Compos. Sci. Technol., 106, 20–24 (2015). W. Wang, D. Liu, Y. Liu, et al., “Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites,” Compos. Sci. Technol., 106, 20–24 (2015).
8.
go back to reference X. Liu, H. Li, Q. Zeng, et al., “Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels,” J. Mater. Chem. A, 3, No. 21, 11641–11649 (2015). X. Liu, H. Li, Q. Zeng, et al., “Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels,” J. Mater. Chem. A, 3, No. 21, 11641–11649 (2015).
9.
go back to reference A. M. Schmidt, “Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles,” Macromol. Rapid Comm., 27, No. 14, 1168–1172 (2006). A. M. Schmidt, “Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles,” Macromol. Rapid Comm., 27, No. 14, 1168–1172 (2006).
10.
go back to reference X. J. Han, Z. Q. Dong, M. M. Fan, et al., “pH-induced shape-memory polymers,” Macromol. Rapid Comm., 33, No. 12, 1055–1060 (2012). X. J. Han, Z. Q. Dong, M. M. Fan, et al., “pH-induced shape-memory polymers,” Macromol. Rapid Comm., 33, No. 12, 1055–1060 (2012).
11.
go back to reference C. Liu, H. Qin, and P. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem., 17, No. 16, 1543–1558 (2007). C. Liu, H. Qin, and P. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem., 17, No. 16, 1543–1558 (2007).
12.
go back to reference J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci., 37, No. 12, 1720–1763 (2012). J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci., 37, No. 12, 1720–1763 (2012).
13.
go back to reference I. A. Rousseau, “Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations,” Polym. Eng. Sci., 48, No. 11, 2075–2089 (2008). I. A. Rousseau, “Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations,” Polym. Eng. Sci., 48, No. 11, 2075–2089 (2008).
14.
go back to reference B. K. Kim, S. Y. Lee, and M. Xu, “Polyurethanes having shape memory effects,” Polymer, 37, No. 26, 5781–5793 (1996). B. K. Kim, S. Y. Lee, and M. Xu, “Polyurethanes having shape memory effects,” Polymer, 37, No. 26, 5781–5793 (1996).
15.
go back to reference Q. Meng, J. Hu, and Y. Zhu, “Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content,” J. Biomater. Sci. Polym. Ed., 19, No. 11, 1437–1454 (2008). Q. Meng, J. Hu, and Y. Zhu, “Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content,” J. Biomater. Sci. Polym. Ed., 19, No. 11, 1437–1454 (2008).
16.
go back to reference N. Yoshihara, H. Ishihara, and T. Yamada, “Relationship between segment structures and elastic properties of segmented poly(urethane-urea) elastic fibers,” Polym. Eng. Sci., 43, No. 11, 1740–1754 (2003). N. Yoshihara, H. Ishihara, and T. Yamada, “Relationship between segment structures and elastic properties of segmented poly(urethane-urea) elastic fibers,” Polym. Eng. Sci., 43, No. 11, 1740–1754 (2003).
17.
go back to reference Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, “Thermomechanics of shape memory polymer nanocomposites,” Mech. Mater., 36, No. 10, 929–940 (2004). Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, “Thermomechanics of shape memory polymer nanocomposites,” Mech. Mater., 36, No. 10, 929–940 (2004).
18.
go back to reference F. Cao and S. C. Jana, “Nanoclay-tethered shape memory polyurethane nanocomposites,” Polymer, 48, No. 13, 3790–3800 (2007). F. Cao and S. C. Jana, “Nanoclay-tethered shape memory polyurethane nanocomposites,” Polymer, 48, No. 13, 3790–3800 (2007).
19.
go back to reference A. G. R. Carlos, F. G. D. Mario, K. Hoejin, et al., “3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement,” Mater. Res. Express, 5, No. 6, 065704 (2018). A. G. R. Carlos, F. G. D. Mario, K. Hoejin, et al., “3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement,” Mater. Res. Express, 5, No. 6, 065704 (2018).
20.
go back to reference F.-P. Du, E.-Z. Ye, W. Yang, et al., “Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites,” Compos. Part B-Eng., 68, 170–175 (2015). F.-P. Du, E.-Z. Ye, W. Yang, et al., “Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites,” Compos. Part B-Eng., 68, 170–175 (2015).
21.
go back to reference A. S. Olalla, V. Sessini, E. G. Torres, and L. Peponi, Smart Nanocellulose Composites with Shape-Memory Behavior, in: D. Puglia, E. Fortunati, and J. M. Kenny (Eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Ch. 9, Elsevier Inc. (2016), pp. 277–312. A. S. Olalla, V. Sessini, E. G. Torres, and L. Peponi, Smart Nanocellulose Composites with Shape-Memory Behavior, in: D. Puglia, E. Fortunati, and J. M. Kenny (Eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Ch. 9, Elsevier Inc. (2016), pp. 277–312.
22.
go back to reference D. Yuan, D. Pedrazzoli, G. Pircheraghi, and I. Manas-Zloczower, “Melt compounding of thermoplastic polyurethanes incorporating 1D and 2D carbon nanofillers,” Polym.-Plast. Technol., 56, No. 7, 732–743 (2017). D. Yuan, D. Pedrazzoli, G. Pircheraghi, and I. Manas-Zloczower, “Melt compounding of thermoplastic polyurethanes incorporating 1D and 2D carbon nanofillers,” Polym.-Plast. Technol., 56, No. 7, 732–743 (2017).
23.
go back to reference A. Nieto, D. Lahiri, and A. Agarwal, “Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering,” Carbon, 50, No. 11, 4068– 4077 (2012). A. Nieto, D. Lahiri, and A. Agarwal, “Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering,” Carbon, 50, No. 11, 4068– 4077 (2012).
24.
go back to reference S. Lashgari, M. Karrabi, I. Ghasemi, et al.,, “Shape memory nanocomposite of poly(L-lactic acid)/graphene nanoplatelets triggered by infrared light and thermal heating,” Express Polym. Lett., 10, No. 4, 349–359 (2016). S. Lashgari, M. Karrabi, I. Ghasemi, et al.,, “Shape memory nanocomposite of poly(L-lactic acid)/graphene nanoplatelets triggered by infrared light and thermal heating,” Express Polym. Lett., 10, No. 4, 349–359 (2016).
26.
go back to reference H. C. Prasad, S. A. R. Hashmi, A. Naik, and H. N. Bhargaw, “Improved shape memory effects in multiwalled-carbon-nano-tube reinforced thermosetting polyurethane composites,” J. Appl. Polym. Sci., 134, No. 7, 44389 (2017), https://doi.org/10.1002/app.44389. H. C. Prasad, S. A. R. Hashmi, A. Naik, and H. N. Bhargaw, “Improved shape memory effects in multiwalled-carbon-nano-tube reinforced thermosetting polyurethane composites,” J. Appl. Polym. Sci., 134, No. 7, 44389 (2017), https://​doi.​org/​10.​1002/​app.​44389.
27.
go back to reference V. A. E. Barrios, J. R. R. Mendez, N. V. P. Aguilar, et al., FTIR – An Essential Characterization Technique for Polymeric Materials, in: T. Theophanides (Ed.), Infrared Spectroscopy: Materials Science, Engineering and Technology, InTech (2012), pp. 195–212. V. A. E. Barrios, J. R. R. Mendez, N. V. P. Aguilar, et al., FTIR – An Essential Characterization Technique for Polymeric Materials, in: T. Theophanides (Ed.), Infrared Spectroscopy: Materials Science, Engineering and Technology, InTech (2012), pp. 195–212.
28.
go back to reference A. S. Patole, S. P. Patole, H. Kang, et al., “A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization,” J. Colloid Interf. Sci., 350, No. 2, 530–537 (2010). A. S. Patole, S. P. Patole, H. Kang, et al., “A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization,” J. Colloid Interf. Sci., 350, No. 2, 530–537 (2010).
29.
go back to reference I. M. Inuwa, A. Hassan, S. A. Samsudin, et al., “Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites,” Polym. Composite., 35, No. 10, 2029–2035 (2014). I. M. Inuwa, A. Hassan, S. A. Samsudin, et al., “Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites,” Polym. Composite., 35, No. 10, 2029–2035 (2014).
30.
go back to reference N. Hameed, P. A. Sreekumar, B. Francis, et al., “Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites,” Compos. Part A-Appl. S., 38, No. 12, 2422–2432 (2007). N. Hameed, P. A. Sreekumar, B. Francis, et al., “Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites,” Compos. Part A-Appl. S., 38, No. 12, 2422–2432 (2007).
Metadata
Title
Development of Graphene Nanoplatelets-Reinforced Thermo-Responsive Shape Memory Nanocomposites for High Recovery Force Applications
Authors
R. Kumar Gupta
S. A. R. Hashmi
S. Verma
A. Naik
Publication date
04-12-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 5/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00130-4

Other articles of this Issue 5/2019

Strength of Materials 5/2019 Go to the issue

Premium Partners