Skip to main content
Top
Published in: Strength of Materials 5/2019

06-12-2019

Power Law of Crack Length Distribution in the Multiple Damage Process

Authors: S. R. Ignatovich, N. I. Bouraou

Published in: Strength of Materials | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multiple fatigue damage, which is characterized by crack initiation and propagation processes, is considered. We proposed two models of multiple damage, which imply random crack initiation and further propagation, with the exponential dependence between their length on the number of loading cycles. Crack initiation is modeled by the stationary Poisson flow with a constant intensity, while crack propagation is characterized by the rate parameter controlling the dependence of crack propagation rate and its length. The first model describes the deterministic case of multiple crack propagation at a fixed value of the above rate parameter, while the second one predicts their propagation by random trajectories according to distribution of the rate parameter. In the former case, crack length distribution is shown to be the Pareto power law with the exponent, which is defined by the ratio of kinetic parameters of initiation and propagation of defects. In the latter case, the rate parameter is uniformly distributed, in accordance with experimental data, so that the power-law distribution of crack length is close to the Pareto distribution. The respective distribution exponent also depends on the ratio of kinetic parameters of multiple damages and tends to drop during damage accumulation to the threshold level (namely, reaches the value of 2). This finding complies with experimental data on multiple damages of various classes of materials, including metals and rock masses. We also substantiated the range of ratios of kinetic parameters of defect initiation and propagation, which ensure the Pareto law of cracks length distribution and can be used to estimate the critical state of cracked bodies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The Yule process that models the formation of genus from species is the fundamental law substantiating the nature of power distribution laws [4].
 
Literature
1.
go back to reference L. R. Botvina and G. I. Barenblatt, “Self-similarity of damage cumulation,” Strength Mater., 17, No. 12, 1653–1663 (1985).CrossRef L. R. Botvina and G. I. Barenblatt, “Self-similarity of damage cumulation,” Strength Mater., 17, No. 12, 1653–1663 (1985).CrossRef
2.
go back to reference L. R. Botvina, Kinetics of Destruction of Structural Materials [in Russian], Nauka, Moscow (1989). L. R. Botvina, Kinetics of Destruction of Structural Materials [in Russian], Nauka, Moscow (1989).
3.
go back to reference N. I. Delas and V. A. Kas’yanov, “Nongauss distribution as a property of complex systems that are organized by type of cenoses,” East.-Eur. J. Enterpr. Technol., 3, No. 4 (57), 27–32 (2012). N. I. Delas and V. A. Kas’yanov, “Nongauss distribution as a property of complex systems that are organized by type of cenoses,” East.-Eur. J. Enterpr. Technol., 3, No. 4 (57), 27–32 (2012).
4.
go back to reference M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemp. Phys., 46, No. 5, 323–351 (2005).CrossRef M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemp. Phys., 46, No. 5, 323–351 (2005).CrossRef
5.
go back to reference V. A. Vladimirov, Yu. L. Vorob’ev, G. G. Malinetskii, et al., Risk Management. Risk, Sustainable Development, Synergetics [in Russian], Nauka, Moscow (2000). V. A. Vladimirov, Yu. L. Vorob’ev, G. G. Malinetskii, et al., Risk Management. Risk, Sustainable Development, Synergetics [in Russian], Nauka, Moscow (2000).
6.
go back to reference L. R. Botvina, Destruction: Kinetics, Mechanisms, General Laws [in Russian], Nauka, Moscow (2008). L. R. Botvina, Destruction: Kinetics, Mechanisms, General Laws [in Russian], Nauka, Moscow (2008).
7.
go back to reference A. Carpinteri, G. Lacidogna, and S. Puzzi, “Prediction of cracking evolution in full scale structures by the b-value analysis and Yule statistics,” Phys. Mesomech., 11, Nos. 5–6, 260–271 (2008).CrossRef A. Carpinteri, G. Lacidogna, and S. Puzzi, “Prediction of cracking evolution in full scale structures by the b-value analysis and Yule statistics,” Phys. Mesomech., 11, Nos. 5–6, 260–271 (2008).CrossRef
8.
go back to reference S. R. Ignatovich and V. S. Krasnopol’skii, “Probabilistic distribution of crack length in the case of multiple fracture,” Strength Mater., 49, No. 6, 760–768 (2017).CrossRef S. R. Ignatovich and V. S. Krasnopol’skii, “Probabilistic distribution of crack length in the case of multiple fracture,” Strength Mater., 49, No. 6, 760–768 (2017).CrossRef
9.
go back to reference V. T. Troshchenko and L. A. Khamaza, “Conditions for the transition from nonlocalized to localized damage in metals and alloys. Part 3. Determination of the transition conditions by the analysis of crack propagation kinetics,” Strength Mater., 46, No. 5, 583–594 (2014).CrossRef V. T. Troshchenko and L. A. Khamaza, “Conditions for the transition from nonlocalized to localized damage in metals and alloys. Part 3. Determination of the transition conditions by the analysis of crack propagation kinetics,” Strength Mater., 46, No. 5, 583–594 (2014).CrossRef
10.
go back to reference L. Molent, M. McDonald, S. Barter, and R. Jones, “Evaluation of spectrum fatigue crack growth using variable amplitude data,” Int. J. Fatigue, 30, No. 1, 119–137 (2008).CrossRef L. Molent, M. McDonald, S. Barter, and R. Jones, “Evaluation of spectrum fatigue crack growth using variable amplitude data,” Int. J. Fatigue, 30, No. 1, 119–137 (2008).CrossRef
11.
go back to reference E. J. Gumbel, Statistics of Extremes, Columbia University Press, New York (1958).CrossRef E. J. Gumbel, Statistics of Extremes, Columbia University Press, New York (1958).CrossRef
12.
go back to reference R. O. Ritchie and J. F. Knott, “Mechanisms of fatigue crack growth in low alloy steel,” Acta Metall., 21, No. 5, 639–648 (1973).CrossRef R. O. Ritchie and J. F. Knott, “Mechanisms of fatigue crack growth in low alloy steel,” Acta Metall., 21, No. 5, 639–648 (1973).CrossRef
13.
go back to reference I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products [in Russian], Nauka, Moscow (1971). I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products [in Russian], Nauka, Moscow (1971).
Metadata
Title
Power Law of Crack Length Distribution in the Multiple Damage Process
Authors
S. R. Ignatovich
N. I. Bouraou
Publication date
06-12-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 5/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00122-4

Other articles of this Issue 5/2019

Strength of Materials 5/2019 Go to the issue

Premium Partners