Skip to main content
Erschienen in: Strength of Materials 5/2019

04.12.2019

Development of Graphene Nanoplatelets-Reinforced Thermo-Responsive Shape Memory Nanocomposites for High Recovery Force Applications

verfasst von: R. Kumar Gupta, S. A. R. Hashmi, S. Verma, A. Naik

Erschienen in: Strength of Materials | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development and large-scale implementation of multifunctional advanced materials with smart and intelligent properties like shape memory are very topical. In the present work, we report the development of multifunctional graphene nanoplatelets (GNPs)-reinforced thermo-responsive shape memory composites, in ether type shape memory polyurethane (SMPU) matrix. A unique twin screw co-rotating microcompounder with a back flow channel was operated to ensure proper dispersion of GNPs in the SMPU matrix for developing different compositions of nanocomposites, namely SMC0, SMC1, SMC2, and SMC3, respectively. The detailed characterizations and properties of the above developed nanocomposites were studied using various complementary techniques for spectroscopy, morphology, mechanical, thermal, shape memory, DMA, etc. The dynamic thermomechanical properties of all the developed nanocomposites were studied at 0.1 and 10 Hz, respectively. Structure of SMP and developed composite were also analyzed using various spectroscopic methods. The addition of GNPs to the SMP matrix improved the mechanical and shape memory properties, although a noticeable impact on thermal property is also reported. The fractured microphotographs reveal the uniform dispersion of GNP in SMPU. Addition of 1 phr GNPs increased storage modulus of SMPU from 3.14 to 4.11 GPa and the value of tan δ peak was decreased from 0.81 to 0.53, respectively. The GNPs in SMPU matrix influences the shape recovery, which is improved with the addition of GNPs in the experimental range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. A. R. Hashmi, H. C. Prasad, R. Abishera, et al., “Improved recovery stress in multi-walled-carbonnanotubes reinforced polyurethane,” Mater. Design, 67, 492–500 (2015).CrossRef S. A. R. Hashmi, H. C. Prasad, R. Abishera, et al., “Improved recovery stress in multi-walled-carbonnanotubes reinforced polyurethane,” Mater. Design, 67, 492–500 (2015).CrossRef
2.
Zurück zum Zitat Y. Wu, J. Hu, C. Zhang, et al., “A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer,” J. Mater. Chem. A, 3, No. 1, 97–100 (2015). Y. Wu, J. Hu, C. Zhang, et al., “A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer,” J. Mater. Chem. A, 3, No. 1, 97–100 (2015).
3.
Zurück zum Zitat E. Pieczyska, M. Staszczak, M. Maj, et al., “Investigation of thermal effects accompanying tensile deformation of Shape Memory Polymer PU-SMP,” Meas. Automat. Monitor., 61, No. 6, 203–205 (2015). E. Pieczyska, M. Staszczak, M. Maj, et al., “Investigation of thermal effects accompanying tensile deformation of Shape Memory Polymer PU-SMP,” Meas. Automat. Monitor., 61, No. 6, 203–205 (2015).
4.
Zurück zum Zitat C. D. Eisenbach, “Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect,” Polymer, 21, No. 10, 1175–1179 (1980). C. D. Eisenbach, “Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect,” Polymer, 21, No. 10, 1175–1179 (1980).
5.
Zurück zum Zitat H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett., 87, No. 1, 015501 (2001). H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett., 87, No. 1, 015501 (2001).
6.
Zurück zum Zitat B. Yang, W. Huang, C. Li, and L. Li, “Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer,” Polymer, 47, No. 4, 1348–1356 (2006). B. Yang, W. Huang, C. Li, and L. Li, “Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer,” Polymer, 47, No. 4, 1348–1356 (2006).
7.
Zurück zum Zitat W. Wang, D. Liu, Y. Liu, et al., “Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites,” Compos. Sci. Technol., 106, 20–24 (2015). W. Wang, D. Liu, Y. Liu, et al., “Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites,” Compos. Sci. Technol., 106, 20–24 (2015).
8.
Zurück zum Zitat X. Liu, H. Li, Q. Zeng, et al., “Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels,” J. Mater. Chem. A, 3, No. 21, 11641–11649 (2015). X. Liu, H. Li, Q. Zeng, et al., “Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels,” J. Mater. Chem. A, 3, No. 21, 11641–11649 (2015).
9.
Zurück zum Zitat A. M. Schmidt, “Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles,” Macromol. Rapid Comm., 27, No. 14, 1168–1172 (2006). A. M. Schmidt, “Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles,” Macromol. Rapid Comm., 27, No. 14, 1168–1172 (2006).
10.
Zurück zum Zitat X. J. Han, Z. Q. Dong, M. M. Fan, et al., “pH-induced shape-memory polymers,” Macromol. Rapid Comm., 33, No. 12, 1055–1060 (2012). X. J. Han, Z. Q. Dong, M. M. Fan, et al., “pH-induced shape-memory polymers,” Macromol. Rapid Comm., 33, No. 12, 1055–1060 (2012).
11.
Zurück zum Zitat C. Liu, H. Qin, and P. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem., 17, No. 16, 1543–1558 (2007). C. Liu, H. Qin, and P. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem., 17, No. 16, 1543–1558 (2007).
12.
Zurück zum Zitat J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci., 37, No. 12, 1720–1763 (2012). J. Hu, Y. Zhu, H. Huang, and J. Lu, “Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications,” Prog. Polym. Sci., 37, No. 12, 1720–1763 (2012).
13.
Zurück zum Zitat I. A. Rousseau, “Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations,” Polym. Eng. Sci., 48, No. 11, 2075–2089 (2008). I. A. Rousseau, “Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations,” Polym. Eng. Sci., 48, No. 11, 2075–2089 (2008).
14.
Zurück zum Zitat B. K. Kim, S. Y. Lee, and M. Xu, “Polyurethanes having shape memory effects,” Polymer, 37, No. 26, 5781–5793 (1996). B. K. Kim, S. Y. Lee, and M. Xu, “Polyurethanes having shape memory effects,” Polymer, 37, No. 26, 5781–5793 (1996).
15.
Zurück zum Zitat Q. Meng, J. Hu, and Y. Zhu, “Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content,” J. Biomater. Sci. Polym. Ed., 19, No. 11, 1437–1454 (2008). Q. Meng, J. Hu, and Y. Zhu, “Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content,” J. Biomater. Sci. Polym. Ed., 19, No. 11, 1437–1454 (2008).
16.
Zurück zum Zitat N. Yoshihara, H. Ishihara, and T. Yamada, “Relationship between segment structures and elastic properties of segmented poly(urethane-urea) elastic fibers,” Polym. Eng. Sci., 43, No. 11, 1740–1754 (2003). N. Yoshihara, H. Ishihara, and T. Yamada, “Relationship between segment structures and elastic properties of segmented poly(urethane-urea) elastic fibers,” Polym. Eng. Sci., 43, No. 11, 1740–1754 (2003).
17.
Zurück zum Zitat Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, “Thermomechanics of shape memory polymer nanocomposites,” Mech. Mater., 36, No. 10, 929–940 (2004). Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, “Thermomechanics of shape memory polymer nanocomposites,” Mech. Mater., 36, No. 10, 929–940 (2004).
18.
Zurück zum Zitat F. Cao and S. C. Jana, “Nanoclay-tethered shape memory polyurethane nanocomposites,” Polymer, 48, No. 13, 3790–3800 (2007). F. Cao and S. C. Jana, “Nanoclay-tethered shape memory polyurethane nanocomposites,” Polymer, 48, No. 13, 3790–3800 (2007).
19.
Zurück zum Zitat A. G. R. Carlos, F. G. D. Mario, K. Hoejin, et al., “3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement,” Mater. Res. Express, 5, No. 6, 065704 (2018). A. G. R. Carlos, F. G. D. Mario, K. Hoejin, et al., “3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement,” Mater. Res. Express, 5, No. 6, 065704 (2018).
20.
Zurück zum Zitat F.-P. Du, E.-Z. Ye, W. Yang, et al., “Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites,” Compos. Part B-Eng., 68, 170–175 (2015). F.-P. Du, E.-Z. Ye, W. Yang, et al., “Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites,” Compos. Part B-Eng., 68, 170–175 (2015).
21.
Zurück zum Zitat A. S. Olalla, V. Sessini, E. G. Torres, and L. Peponi, Smart Nanocellulose Composites with Shape-Memory Behavior, in: D. Puglia, E. Fortunati, and J. M. Kenny (Eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Ch. 9, Elsevier Inc. (2016), pp. 277–312. A. S. Olalla, V. Sessini, E. G. Torres, and L. Peponi, Smart Nanocellulose Composites with Shape-Memory Behavior, in: D. Puglia, E. Fortunati, and J. M. Kenny (Eds.), Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Ch. 9, Elsevier Inc. (2016), pp. 277–312.
22.
Zurück zum Zitat D. Yuan, D. Pedrazzoli, G. Pircheraghi, and I. Manas-Zloczower, “Melt compounding of thermoplastic polyurethanes incorporating 1D and 2D carbon nanofillers,” Polym.-Plast. Technol., 56, No. 7, 732–743 (2017). D. Yuan, D. Pedrazzoli, G. Pircheraghi, and I. Manas-Zloczower, “Melt compounding of thermoplastic polyurethanes incorporating 1D and 2D carbon nanofillers,” Polym.-Plast. Technol., 56, No. 7, 732–743 (2017).
23.
Zurück zum Zitat A. Nieto, D. Lahiri, and A. Agarwal, “Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering,” Carbon, 50, No. 11, 4068– 4077 (2012). A. Nieto, D. Lahiri, and A. Agarwal, “Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering,” Carbon, 50, No. 11, 4068– 4077 (2012).
24.
Zurück zum Zitat S. Lashgari, M. Karrabi, I. Ghasemi, et al.,, “Shape memory nanocomposite of poly(L-lactic acid)/graphene nanoplatelets triggered by infrared light and thermal heating,” Express Polym. Lett., 10, No. 4, 349–359 (2016). S. Lashgari, M. Karrabi, I. Ghasemi, et al.,, “Shape memory nanocomposite of poly(L-lactic acid)/graphene nanoplatelets triggered by infrared light and thermal heating,” Express Polym. Lett., 10, No. 4, 349–359 (2016).
26.
Zurück zum Zitat H. C. Prasad, S. A. R. Hashmi, A. Naik, and H. N. Bhargaw, “Improved shape memory effects in multiwalled-carbon-nano-tube reinforced thermosetting polyurethane composites,” J. Appl. Polym. Sci., 134, No. 7, 44389 (2017), https://doi.org/10.1002/app.44389. H. C. Prasad, S. A. R. Hashmi, A. Naik, and H. N. Bhargaw, “Improved shape memory effects in multiwalled-carbon-nano-tube reinforced thermosetting polyurethane composites,” J. Appl. Polym. Sci., 134, No. 7, 44389 (2017), https://​doi.​org/​10.​1002/​app.​44389.
27.
Zurück zum Zitat V. A. E. Barrios, J. R. R. Mendez, N. V. P. Aguilar, et al., FTIR – An Essential Characterization Technique for Polymeric Materials, in: T. Theophanides (Ed.), Infrared Spectroscopy: Materials Science, Engineering and Technology, InTech (2012), pp. 195–212. V. A. E. Barrios, J. R. R. Mendez, N. V. P. Aguilar, et al., FTIR – An Essential Characterization Technique for Polymeric Materials, in: T. Theophanides (Ed.), Infrared Spectroscopy: Materials Science, Engineering and Technology, InTech (2012), pp. 195–212.
28.
Zurück zum Zitat A. S. Patole, S. P. Patole, H. Kang, et al., “A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization,” J. Colloid Interf. Sci., 350, No. 2, 530–537 (2010). A. S. Patole, S. P. Patole, H. Kang, et al., “A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization,” J. Colloid Interf. Sci., 350, No. 2, 530–537 (2010).
29.
Zurück zum Zitat I. M. Inuwa, A. Hassan, S. A. Samsudin, et al., “Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites,” Polym. Composite., 35, No. 10, 2029–2035 (2014). I. M. Inuwa, A. Hassan, S. A. Samsudin, et al., “Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites,” Polym. Composite., 35, No. 10, 2029–2035 (2014).
30.
Zurück zum Zitat N. Hameed, P. A. Sreekumar, B. Francis, et al., “Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites,” Compos. Part A-Appl. S., 38, No. 12, 2422–2432 (2007). N. Hameed, P. A. Sreekumar, B. Francis, et al., “Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites,” Compos. Part A-Appl. S., 38, No. 12, 2422–2432 (2007).
Metadaten
Titel
Development of Graphene Nanoplatelets-Reinforced Thermo-Responsive Shape Memory Nanocomposites for High Recovery Force Applications
verfasst von
R. Kumar Gupta
S. A. R. Hashmi
S. Verma
A. Naik
Publikationsdatum
04.12.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00130-4

Weitere Artikel der Ausgabe 5/2019

Strength of Materials 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.