Skip to main content
Erschienen in: Strength of Materials 5/2019

05.12.2019

On Suitability of the Averaged Strain Energy Density Criterion in Predicting Mixed Mode I/II Brittle Fracture of Blunt V-Notches with Negative Mode I Contributions

verfasst von: A. R. Torabi, N. Razavi, F. Berto, M. R. Ayatollahi

Erschienen in: Strength of Materials | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main goal of the present research is to check the suitability of the well-known brittle fracture criterion, namely the averaged strain energy density (ASED), in predicting mixed mode I/II brittle fracture of round V-notches under negative mode I conditions. For this purpose, it is attempted for the first time to theoretically predict the fracture loads of numerous round-tip V-notched Brazilian disk (RV-BD) specimens made of PMMA and subjected to mixed mode I/II loading with negative mode I contributions that have been most recently reported in the open literature. It is revealed that ASED criterion is suitable for brittle fracture prediction not only under conventional mixed mode I/II loading conditions, but also under mixed mode I/II loading with negative mode I contributions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fract. Mech., 75, 4410–4421 (2008).CrossRef L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fract. Mech., 75, 4410–4421 (2008).CrossRef
2.
Zurück zum Zitat D. Taylor, “Predicting the fracture strength of ceramic materials using the theory of critical distances,” Eng. Fract. Mech., 71, 2407–2416 (2004).CrossRef D. Taylor, “Predicting the fracture strength of ceramic materials using the theory of critical distances,” Eng. Fract. Mech., 71, 2407–2416 (2004).CrossRef
3.
Zurück zum Zitat S. Kasiri and D. Taylor, “A critical distance study of stress concentrations in bone,” J. Biomech., 41, 603–609 (2008).CrossRef S. Kasiri and D. Taylor, “A critical distance study of stress concentrations in bone,” J. Biomech., 41, 603–609 (2008).CrossRef
4.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Brittle fracture in rounded-tip V-shaped notches,” Mater. Design, 31, 60–67 (2010).CrossRef M. R. Ayatollahi and A. R. Torabi, “Brittle fracture in rounded-tip V-shaped notches,” Mater. Design, 31, 60–67 (2010).CrossRef
5.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched polycrystalline graphite specimens,” Carbon, 48, 2255–2265 (2010).CrossRef M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched polycrystalline graphite specimens,” Carbon, 48, 2255–2265 (2010).CrossRef
6.
Zurück zum Zitat A. R. Torabi, “Fracture assessment of U-notched graphite plates under tension,” Int. J. Fracture, 181, 285–292 (2013).CrossRef A. R. Torabi, “Fracture assessment of U-notched graphite plates under tension,” Int. J. Fracture, 181, 285–292 (2013).CrossRef
7.
Zurück zum Zitat A. R. Torabi, M. Fakoor, and E. Pirhadi, “Tensile fracture in coarse-grained polycrystalline graphite weakened by a U-shaped notch,” Eng. Fract. Mech., 111, 77–85 (2013).CrossRef A. R. Torabi, M. Fakoor, and E. Pirhadi, “Tensile fracture in coarse-grained polycrystalline graphite weakened by a U-shaped notch,” Eng. Fract. Mech., 111, 77–85 (2013).CrossRef
9.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “A criterion for brittle fracture in U-notched components under mixed mode loading,” Eng. Fract. Mech., 76, 1883–1896 (2009).CrossRef M. R. Ayatollahi and A. R. Torabi, “A criterion for brittle fracture in U-notched components under mixed mode loading,” Eng. Fract. Mech., 76, 1883–1896 (2009).CrossRef
10.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Investigation of mixed mode brittle fracture in rounded-tip V-notched components,” Eng. Fract. Mech., 77, 3087–3104 (2010).CrossRef M. R. Ayatollahi and A. R. Torabi, “Investigation of mixed mode brittle fracture in rounded-tip V-notched components,” Eng. Fract. Mech., 77, 3087–3104 (2010).CrossRef
11.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Experimental verification of RV-MTS model for fracture in soda-lime glass weakened by a V-notch,” J. Mech. Sci. Technol., 25, 2529–2534 (2011).CrossRef M. R. Ayatollahi and A. R. Torabi, “Experimental verification of RV-MTS model for fracture in soda-lime glass weakened by a V-notch,” J. Mech. Sci. Technol., 25, 2529–2534 (2011).CrossRef
12.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Failure assessment of notched polycrystalline graphite under tensile-shear loading,” Mater. Sci. Eng. A, 528, 5685–5695 (2011).CrossRef M. R. Ayatollahi and A. R. Torabi, “Failure assessment of notched polycrystalline graphite under tensile-shear loading,” Mater. Sci. Eng. A, 528, 5685–5695 (2011).CrossRef
13.
Zurück zum Zitat A. R. Torabi, “Sudden fracture from U-notches in fine-grained isostatic graphite under mixed mode I/II loading,” Int. J. Fracture, 181, 309–316 (2013).CrossRef A. R. Torabi, “Sudden fracture from U-notches in fine-grained isostatic graphite under mixed mode I/II loading,” Int. J. Fracture, 181, 309–316 (2013).CrossRef
14.
Zurück zum Zitat M. R. Ayatollahi, A. R. Torabi, and P. Azizi, “Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch,” Exp. Mech., 51, 919–932 (2010).CrossRef M. R. Ayatollahi, A. R. Torabi, and P. Azizi, “Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch,” Exp. Mech., 51, 919–932 (2010).CrossRef
15.
Zurück zum Zitat A. R. Torabi, M. Fakoor, and E. Pirhadi, “Fracture analysis of U-notched disc-type graphite specimens under mixed mode loading,” Int. J. Solids Struct., 51, 1287–1298 (2014).CrossRef A. R. Torabi, M. Fakoor, and E. Pirhadi, “Fracture analysis of U-notched disc-type graphite specimens under mixed mode loading,” Int. J. Solids Struct., 51, 1287–1298 (2014).CrossRef
16.
Zurück zum Zitat A. R. Torabi and E. Pirhadi, “Stress-based criteria for brittle fracture in key-hole notches under mixed mode loading,” Eur. J. Mech. A-Solid., 49, 1–12 (2015).CrossRef A. R. Torabi and E. Pirhadi, “Stress-based criteria for brittle fracture in key-hole notches under mixed mode loading,” Eur. J. Mech. A-Solid., 49, 1–12 (2015).CrossRef
17.
Zurück zum Zitat A. R. Torabi, S. M. Abedinasab, “Brittle fracture in key-hole notches under mixed mode loading: Experimental study and theoretical predictions,” Eng. Fract. Mech., 134, 35–53 (2015).CrossRef A. R. Torabi, S. M. Abedinasab, “Brittle fracture in key-hole notches under mixed mode loading: Experimental study and theoretical predictions,” Eng. Fract. Mech., 134, 35–53 (2015).CrossRef
18.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen,” Int. J. Solids Struct., 47, 454–465 (2010).CrossRef M. R. Ayatollahi and A. R. Torabi, “Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen,” Int. J. Solids Struct., 47, 454–465 (2010).CrossRef
19.
Zurück zum Zitat P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fracture, 112, 275–298 (2001).CrossRef P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fracture, 112, 275–298 (2001).CrossRef
20.
Zurück zum Zitat F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R, 75, 1–48 (2014).CrossRef F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R, 75, 1–48 (2014).CrossRef
21.
Zurück zum Zitat F. Berto, A. Campagnolo, and M. R. Ayatollahi, “Brittle fracture of rounded V-notches in isostatic graphite under static multiaxial loading,” Phys. Mesomech., 18, 283–297 (2015).CrossRef F. Berto, A. Campagnolo, and M. R. Ayatollahi, “Brittle fracture of rounded V-notches in isostatic graphite under static multiaxial loading,” Phys. Mesomech., 18, 283–297 (2015).CrossRef
22.
Zurück zum Zitat M. R. M. Aliha, F. Berto, A. Mousavi, and N. Razavi, “On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material,” Theor. Appl. Fract. Mech., 92, 198–204 (2017).CrossRef M. R. M. Aliha, F. Berto, A. Mousavi, and N. Razavi, “On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material,” Theor. Appl. Fract. Mech., 92, 198–204 (2017).CrossRef
23.
Zurück zum Zitat A. R. Torabi, F. Berto, and N. Razavi, “Tensile failure prediction of U-notched plates under moderate-scale and large-scale yielding regimes,” Theor. Appl. Fract. Mech., 97, 434–439 (2018).CrossRef A. R. Torabi, F. Berto, and N. Razavi, “Tensile failure prediction of U-notched plates under moderate-scale and large-scale yielding regimes,” Theor. Appl. Fract. Mech., 97, 434–439 (2018).CrossRef
24.
Zurück zum Zitat A. R. Torabi, F. Berto, and N. Razavi, “Ductile failure prediction of thin notched aluminum plates subjected to combined tension-shear loading,” Theor. Appl. Fract. Mech., 97, 280–288 (2018).CrossRef A. R. Torabi, F. Berto, and N. Razavi, “Ductile failure prediction of thin notched aluminum plates subjected to combined tension-shear loading,” Theor. Appl. Fract. Mech., 97, 280–288 (2018).CrossRef
25.
Zurück zum Zitat H. R. Majidi, A. R. Torabi, M. Zabihi, et al., “Energy-based ductile failure predictions in cracked friction-stir welded joints,” Eng. Fail. Anal., 102, 327–337 (2019).CrossRef H. R. Majidi, A. R. Torabi, M. Zabihi, et al., “Energy-based ductile failure predictions in cracked friction-stir welded joints,” Eng. Fail. Anal., 102, 327–337 (2019).CrossRef
26.
Zurück zum Zitat F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Design, 41, 421–432 (2012).CrossRef F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Design, 41, 421–432 (2012).CrossRef
27.
Zurück zum Zitat F. J. Gomez, M. Elices, and A. Valiente, “Cracking in PMMA containing U-shaped notches,” Fatigue Fract. Eng. Mater. Struct., 23, 795–803 (2000).CrossRef F. J. Gomez, M. Elices, and A. Valiente, “Cracking in PMMA containing U-shaped notches,” Fatigue Fract. Eng. Mater. Struct., 23, 795–803 (2000).CrossRef
28.
Zurück zum Zitat B. Saboori, A. R. Torabi, F. Berto, and N. Razavi, “Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples,” Struct. Eng. Mech., 65, No. 6, 699–706 (2018). B. Saboori, A. R. Torabi, F. Berto, and N. Razavi, “Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples,” Struct. Eng. Mech., 65, No. 6, 699–706 (2018).
29.
Zurück zum Zitat F. Berto, D. A. Cendon, P. Lazzarin, and M. Elices, “Fracture behaviour of notched round bars made of PMMA subjected to torsion at -60°C,” Eng. Fract. Mech., 102, 271–287 (2013).CrossRef F. Berto, D. A. Cendon, P. Lazzarin, and M. Elices, “Fracture behaviour of notched round bars made of PMMA subjected to torsion at -60°C,” Eng. Fract. Mech., 102, 271–287 (2013).CrossRef
30.
Zurück zum Zitat F. J. Gómez, G. V. Guinea, and M. Elices, “Failure criteria for linear elastic materials with U-notches,” Int. J. Fracture, 141, 99–113 (2006).CrossRef F. J. Gómez, G. V. Guinea, and M. Elices, “Failure criteria for linear elastic materials with U-notches,” Int. J. Fracture, 141, 99–113 (2006).CrossRef
31.
Zurück zum Zitat D. A. Cendón, A. R. Torabi, and M. Elices, “Fracture assessment of graphite V-notched and U-notched specimens by using the cohesive crack model,” Fatigue Fract. Eng. Mater. Struct., 38, 563–573 (2015).CrossRef D. A. Cendón, A. R. Torabi, and M. Elices, “Fracture assessment of graphite V-notched and U-notched specimens by using the cohesive crack model,” Fatigue Fract. Eng. Mater. Struct., 38, 563–573 (2015).CrossRef
32.
Zurück zum Zitat D. Leguillon, “Strength or toughness? A criterion for crack onset at a notch,” Eur. J. Mech. A-Solid., 21, 61–72 (2002).CrossRef D. Leguillon, “Strength or toughness? A criterion for crack onset at a notch,” Eur. J. Mech. A-Solid., 21, 61–72 (2002).CrossRef
33.
Zurück zum Zitat Z. Yosibash, E. Priel, and D. Leguillon, “A failure criterion for brittle elastic materials under mixed-mode loading,” Int. J. Fracture, 141, 291–312 (2006).CrossRef Z. Yosibash, E. Priel, and D. Leguillon, “A failure criterion for brittle elastic materials under mixed-mode loading,” Int. J. Fracture, 141, 291–312 (2006).CrossRef
34.
Zurück zum Zitat A. Sapora, P. Cornetti, A. Carpinteri, and D. Firrao, “An improved Finite Fracture Mechanics approach to blunt V-notch brittle fracture mechanics: Experimental verification on ceramic, metallic, and plastic materials,” Theor. Appl. Fract. Mech., 78, 20–24 (2015).CrossRef A. Sapora, P. Cornetti, A. Carpinteri, and D. Firrao, “An improved Finite Fracture Mechanics approach to blunt V-notch brittle fracture mechanics: Experimental verification on ceramic, metallic, and plastic materials,” Theor. Appl. Fract. Mech., 78, 20–24 (2015).CrossRef
35.
Zurück zum Zitat P. Weiβgraeber and W. Becker, “Finite Fracture Mechanics model for mixed mode fracture in adhesive joints,” Int. J. Solids Struct., 50, 2383–2394 (2013).CrossRef P. Weiβgraeber and W. Becker, “Finite Fracture Mechanics model for mixed mode fracture in adhesive joints,” Int. J. Solids Struct., 50, 2383–2394 (2013).CrossRef
36.
Zurück zum Zitat A. Sapora, P. Cornetti, and A. Carpinteri, “A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading,” Eng. Fract. Mech., 97, 216–226 (2013).CrossRef A. Sapora, P. Cornetti, and A. Carpinteri, “A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading,” Eng. Fract. Mech., 97, 216–226 (2013).CrossRef
37.
Zurück zum Zitat F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013).CrossRef F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013).CrossRef
38.
Zurück zum Zitat A. R. Torabi and M. R. Ayatollahi, “Compressive brittle fracture in V-notches with end holes,” Eur. J. Mech. A-Solid., 45, 32–40 (2014).CrossRef A. R. Torabi and M. R. Ayatollahi, “Compressive brittle fracture in V-notches with end holes,” Eur. J. Mech. A-Solid., 45, 32–40 (2014).CrossRef
39.
Zurück zum Zitat M. R. Ayatollahi, A. R. Torabi, and M. Firoozabadi, “Theoretical and experimental investigation of brittle fracture in V-notched PMMA specimens under compressive loading,” Eng. Fract. Mech., 135, 187–205 (2015).CrossRef M. R. Ayatollahi, A. R. Torabi, and M. Firoozabadi, “Theoretical and experimental investigation of brittle fracture in V-notched PMMA specimens under compressive loading,” Eng. Fract. Mech., 135, 187–205 (2015).CrossRef
40.
Zurück zum Zitat A. R. Torabi, M. Firoozabadi, M. R. Ayatollahi, “Brittle fracture analysis of blunt V-notches under compression,” Int. J. Solids Struct., 67–68, 219–230 (2015).CrossRef A. R. Torabi, M. Firoozabadi, M. R. Ayatollahi, “Brittle fracture analysis of blunt V-notches under compression,” Int. J. Solids Struct., 67–68, 219–230 (2015).CrossRef
41.
Zurück zum Zitat A. R. Torabi, B. Bahrami, and M. R. Ayatollahi, “Mixed mode I/II brittle fracture in V-notched Brazilian disk specimens under negative mode I conditions,” Phys. Mesomech., 19, 332–348 (2016).CrossRef A. R. Torabi, B. Bahrami, and M. R. Ayatollahi, “Mixed mode I/II brittle fracture in V-notched Brazilian disk specimens under negative mode I conditions,” Phys. Mesomech., 19, 332–348 (2016).CrossRef
42.
Zurück zum Zitat A. R. Torabi, H. R. Majidi, and M. R. Ayatollahi, “Brittle failure of key-hole notches under mixed mode I/II loading with negative mode I contributions,” Eng. Fract. Mech., 168, 51–72 (2016).CrossRef A. R. Torabi, H. R. Majidi, and M. R. Ayatollahi, “Brittle failure of key-hole notches under mixed mode I/II loading with negative mode I contributions,” Eng. Fract. Mech., 168, 51–72 (2016).CrossRef
43.
Zurück zum Zitat M. R. Ayatollahi, A. R. Torabi, and A. S. Rahimi, “Brittle fracture assessment of engineering components in the presence of notches: a review,” Fatigue Fract. Eng. Mater. Struct., 39, 267–291 (2016).CrossRef M. R. Ayatollahi, A. R. Torabi, and A. S. Rahimi, “Brittle fracture assessment of engineering components in the presence of notches: a review,” Fatigue Fract. Eng. Mater. Struct., 39, 267–291 (2016).CrossRef
44.
Zurück zum Zitat A. R. Torabi and M. Taherkhani, “Extensive data of notch shape factors for V-notched Brazilian disc specimen under mixed mode loading,” Mater. Sci. Eng. A, 528, 8599–8609 (2011).CrossRef A. R. Torabi and M. Taherkhani, “Extensive data of notch shape factors for V-notched Brazilian disc specimen under mixed mode loading,” Mater. Sci. Eng. A, 528, 8599–8609 (2011).CrossRef
45.
Zurück zum Zitat G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).CrossRef
46.
Zurück zum Zitat C. P. Spyropoulos, “Energy release rate and path independent integral study for piezoelectric material with crack,” Int. J. Solids Struct., 41, 907–921 (2004).CrossRef C. P. Spyropoulos, “Energy release rate and path independent integral study for piezoelectric material with crack,” Int. J. Solids Struct., 41, 907–921 (2004).CrossRef
47.
Zurück zum Zitat J. Z. Zuo and G. C. Sih, “Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 17–33 (2000).CrossRef J. Z. Zuo and G. C. Sih, “Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 17–33 (2000).CrossRef
48.
Zurück zum Zitat G. C. Sih and J. Z. Zuo, “Multiscale behavior of crack initiation and growth in piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 123–141 (2000).CrossRef G. C. Sih and J. Z. Zuo, “Multiscale behavior of crack initiation and growth in piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 123–141 (2000).CrossRef
49.
Zurück zum Zitat G. C. Sih and Z. F. Song, “Damage analysis of tetragonal perovskite structure ceramics implicated by asymptotic field solutions and boundary conditions,” Theor. Appl. Fract. Mech., 38, 15–36 (2002).CrossRef G. C. Sih and Z. F. Song, “Damage analysis of tetragonal perovskite structure ceramics implicated by asymptotic field solutions and boundary conditions,” Theor. Appl. Fract. Mech., 38, 15–36 (2002).CrossRef
50.
Zurück zum Zitat Z. F. Song and G. C. Sih, “Electromechanical influence of crack velocity at bifurcation for poled ferroelectric materials,” Theor. Appl. Fract. Mech., 38, 121–139 (2002).CrossRef Z. F. Song and G. C. Sih, “Electromechanical influence of crack velocity at bifurcation for poled ferroelectric materials,” Theor. Appl. Fract. Mech., 38, 121–139 (2002).CrossRef
51.
Zurück zum Zitat Z. Suo, C.-M. Kuo, D. M. Barnett, and J. R. Willis, “Fracture mechanics for piezoelectric ceramics,” J. Mech. Phys. Solids, 40, 739–765 (1992).CrossRef Z. Suo, C.-M. Kuo, D. M. Barnett, and J. R. Willis, “Fracture mechanics for piezoelectric ceramics,” J. Mech. Phys. Solids, 40, 739–765 (1992).CrossRef
52.
Zurück zum Zitat H. Gao, T.-Y. Zhang, and P. Tong, “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic,” J. Mech. Phys. Solids, 45, 491–510 (1997).CrossRef H. Gao, T.-Y. Zhang, and P. Tong, “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic,” J. Mech. Phys. Solids, 45, 491–510 (1997).CrossRef
53.
Zurück zum Zitat Z. Yosibash, A. Bussiba, and I. Gilad, “Failure criteria for brittle elastic materials, Int. J. Fracture, 125, 307–333 (2004). Z. Yosibash, A. Bussiba, and I. Gilad, “Failure criteria for brittle elastic materials, Int. J. Fracture, 125, 307–333 (2004).
54.
Zurück zum Zitat N. Razavi, M. R. M. Aliha, and F. Berto, “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens,” Theor. Appl. Fract. Mech., 97, 419–425 (2018).CrossRef N. Razavi, M. R. M. Aliha, and F. Berto, “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens,” Theor. Appl. Fract. Mech., 97, 419–425 (2018).CrossRef
55.
Zurück zum Zitat N. Razavi, M. R. Ayatollahi, and F. Berto, “A synthesis of geometry effect on brittle fracture,” Eng. Fract. Mech., 187, 94–102 (2018).CrossRef N. Razavi, M. R. Ayatollahi, and F. Berto, “A synthesis of geometry effect on brittle fracture,” Eng. Fract. Mech., 187, 94–102 (2018).CrossRef
56.
Zurück zum Zitat N. Razavi and F. Berto, “Directed energy deposition versus wrought Ti–6Al–4V: A comparison of microstructure, fatigue behavior, and notch sensitivity,” Adv. Eng. Mater., 21, No. 8, 1900220 (2019). N. Razavi and F. Berto, “Directed energy deposition versus wrought Ti–6Al–4V: A comparison of microstructure, fatigue behavior, and notch sensitivity,” Adv. Eng. Mater., 21, No. 8, 1900220 (2019).
57.
Zurück zum Zitat L. P. Pook, A. Campagnolo, and F. Berto, “Coupled fracture modes of discs and plates under anti-plane loading and a disc under in-plane shear loading,” Fatigue Fract. Eng. Mater. Struct., 39, 924–938 (2016).CrossRef L. P. Pook, A. Campagnolo, and F. Berto, “Coupled fracture modes of discs and plates under anti-plane loading and a disc under in-plane shear loading,” Fatigue Fract. Eng. Mater. Struct., 39, 924–938 (2016).CrossRef
58.
Zurück zum Zitat L. P. Pook, F. Berto, and A. Campagnolo, “State of the art of corner point singularities under in-plane and out-of-plane loading,” Eng. Fract. Mech., 174, 2–9 (2017).CrossRef L. P. Pook, F. Berto, and A. Campagnolo, “State of the art of corner point singularities under in-plane and out-of-plane loading,” Eng. Fract. Mech., 174, 2–9 (2017).CrossRef
59.
Zurück zum Zitat P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications,” Int. J. Fatigue, 32, 1559–1567 (2010).CrossRef P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications,” Int. J. Fatigue, 32, 1559–1567 (2010).CrossRef
60.
Zurück zum Zitat G. Meneghetti, A. Campagnolo, F. Berto, and B. Atzori, “Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+II) loading,” Theor. Appl. Fract. Mech., 79, 113–124 (2015).CrossRef G. Meneghetti, A. Campagnolo, F. Berto, and B. Atzori, “Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+II) loading,” Theor. Appl. Fract. Mech., 79, 113–124 (2015).CrossRef
61.
Zurück zum Zitat A. Campagnolo, G. Meneghetti, and F. Berto, “Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution,” Fatigue Fract. Eng. Mater. Struct., 39, 982–998 (2016).CrossRef A. Campagnolo, G. Meneghetti, and F. Berto, “Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution,” Fatigue Fract. Eng. Mater. Struct., 39, 982–998 (2016).CrossRef
Metadaten
Titel
On Suitability of the Averaged Strain Energy Density Criterion in Predicting Mixed Mode I/II Brittle Fracture of Blunt V-Notches with Negative Mode I Contributions
verfasst von
A. R. Torabi
N. Razavi
F. Berto
M. R. Ayatollahi
Publikationsdatum
05.12.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00126-0

Weitere Artikel der Ausgabe 5/2019

Strength of Materials 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.