Skip to main content
Top
Published in: Strength of Materials 5/2019

03-12-2019

Methods for Evaluating the Characteristics of the Stress-Strain State of Seismic Blocks Under Operating Conditions

Authors: A. F. Bulat, V. I. Dyrda, S. N. Grebenyuk, G. N. Agal’tsov

Published in: Strength of Materials | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The concept of the vibration and seismic isolation of heavy mining machines, buildings, and structures with rubber seismic blocks is considered. The concept of the seismic isolation of structures is very topical. In Japan, New Zealand, France, Greece, England, USA, and in a number of other countries, it is successfully used for the earthquake protection of such important structures as nuclear power stations, schools, bridges, museums, office and residential buildings. Seismic isolation systems including rubber blocks are most commonly used. The known publications in these countries do not present analytical calculations and technological peculiarities of manufacturing elements. In Ukraine, this concept was extended by developing seismic isolation blocks for the earthquake protection of residential buildings and vibration isolation blocks for the vibration protection of heavy equipment (weight of up to 300 t, used in Russia, Ukraine) and residential buildings. Results of static and dynamic tests of a parametric series of rubber seismic blocks for the vibration protection of residential buildings are presented. A pile design with anti-vibration rubber mounts is considered. Developed and tested rubber seismic block designs were used to protect against subway and motor vehicle induced vibrations two dwelling houses in Kiev (a ten-section ten-storey and a three-section 27-storey dwelling house) and three houses in Lvov. Vibration and seismic isolation with rubber seismic blocks provides a natural vibration frequency of building in the horizontal plane of under 1 Hz, which complies with the requirements of the state building codes and Eurocode 8 for the design of seismic isolation systems for buildings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. I. Dyrda, Yu. I. Nemchinov, M. I. Lysytsya, et al., Anti-Seismic Support [in Ukrainian], Ukraine Patent No. 58418, Valid since April 11, 2011, Bull. No. 7. V. I. Dyrda, Yu. I. Nemchinov, M. I. Lysytsya, et al., Anti-Seismic Support [in Ukrainian], Ukraine Patent No. 58418, Valid since April 11, 2011, Bull. No. 7.
2.
go back to reference E. E. Lavendel, Design of Technical Rubber Products [in Russian], Mashinostroenie, Moscow (1976). E. E. Lavendel, Design of Technical Rubber Products [in Russian], Mashinostroenie, Moscow (1976).
3.
go back to reference V. L. Biderman and N. A. Sukhova, “Design of cylindrical and rectangular long rubber compression shock absorbers,” Rasch. Prochn., No. 13, 55–72 (1968). V. L. Biderman and N. A. Sukhova, “Design of cylindrical and rectangular long rubber compression shock absorbers,” Rasch. Prochn., No. 13, 55–72 (1968).
4.
go back to reference V. L. Biderman and G. V. Mart’yanova, “Compression of low rubber–metal shock absorbers and gaskets,” Izv. AN SSSR. Mekh. Mashinostr., Issue 3, 154–158 (1962). V. L. Biderman and G. V. Mart’yanova, “Compression of low rubber–metal shock absorbers and gaskets,” Izv. AN SSSR. Mekh. Mashinostr., Issue 3, 154–158 (1962).
5.
go back to reference V. I. Dyrda, A. V. Goncharenko, and L. A. Zharko, “Solution of the problem of compression of a viscoelastic cylinder by the Ritz method,” Geotekhn. Mekh., Issue 86, 113–124 (2010). V. I. Dyrda, A. V. Goncharenko, and L. A. Zharko, “Solution of the problem of compression of a viscoelastic cylinder by the Ritz method,” Geotekhn. Mekh., Issue 86, 113–124 (2010).
6.
go back to reference A. F. Bulat, V. I. Dyrda, and Yu. I. Nemchinov, “Vibroseismic protection of machines and structures using rubber blocks,” Geotekhn. Mekh., Issue 85, 128–132 (2010). A. F. Bulat, V. I. Dyrda, and Yu. I. Nemchinov, “Vibroseismic protection of machines and structures using rubber blocks,” Geotekhn. Mekh., Issue 85, 128–132 (2010).
7.
go back to reference V. I. Dyrda, T. E. Tverdokhleb, N. I. Lisitsa, and N. N. Lisitsa, “Application of the β-method for the design of rubber-metal anti-vibration seismic blocks,” Geotekhn. Mekh., Issue 86, 144–158 (2010). V. I. Dyrda, T. E. Tverdokhleb, N. I. Lisitsa, and N. N. Lisitsa, “Application of the β-method for the design of rubber-metal anti-vibration seismic blocks,” Geotekhn. Mekh., Issue 86, 144–158 (2010).
8.
go back to reference M. Banić, D. Stamenković, M. Milošević, and A. Miltenović, “Tribology aspect of rubber shock absorbers development,” Tribology in Industry, 35, No. 3, 225–231 (2013). M. Banić, D. Stamenković, M. Milošević, and A. Miltenović, “Tribology aspect of rubber shock absorbers development,” Tribology in Industry, 35, No. 3, 225–231 (2013).
9.
go back to reference O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1: The Basis, Butterworth-Heinemann, Oxford (2000). O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1: The Basis, Butterworth-Heinemann, Oxford (2000).
10.
go back to reference Yu. I. Dimitrienko, S. M. Tsarev, and A. V. Veretennikov, “Development of a finite element method for incompressible materials with high strains,” Vestn. Bauman MGTU. Estestv. Nauki, No. 3, 69–82 (2007). Yu. I. Dimitrienko, S. M. Tsarev, and A. V. Veretennikov, “Development of a finite element method for incompressible materials with high strains,” Vestn. Bauman MGTU. Estestv. Nauki, No. 3, 69–82 (2007).
11.
go back to reference A. E. Belkin and D. S. Khominich, “Calculation of high strains of an arch shock absorber with allowance for the volume compressibility of rubber,” Vestn. Bauman MGTU. Mashinostroenie, No. 2, 3–11 (2012). A. E. Belkin and D. S. Khominich, “Calculation of high strains of an arch shock absorber with allowance for the volume compressibility of rubber,” Vestn. Bauman MGTU. Mashinostroenie, No. 2, 3–11 (2012).
12.
go back to reference V. I. Dyrda, S. N. Grebenyuk, and S. I. Gomenyuk, Analytical and Numerical Methods for Designing Rubber Parts [in Russian], Zaporozhzhye National University, Dnepropetrovsk–Zaporozhzhye (2012). V. I. Dyrda, S. N. Grebenyuk, and S. I. Gomenyuk, Analytical and Numerical Methods for Designing Rubber Parts [in Russian], Zaporozhzhye National University, Dnepropetrovsk–Zaporozhzhye (2012).
13.
go back to reference V. V. Kirichevskii, Finite Element Method in the Mechanics of Elastomers [in Russian], Naukova Dumka, Kiev (2002). V. V. Kirichevskii, Finite Element Method in the Mechanics of Elastomers [in Russian], Naukova Dumka, Kiev (2002).
14.
go back to reference DBN V.1.1-12. Construction in the Seismic Areas of Ukraine [in Ukrainian], Ukrainian Ministry of Regional Development, Kiev (2014). DBN V.1.1-12. Construction in the Seismic Areas of Ukraine [in Ukrainian], Ukrainian Ministry of Regional Development, Kiev (2014).
15.
go back to reference A. F. Bulat, V. I. Dyrda, M. I. Lysytsya, and S. M. Grebenyuk, “Numerical simulation of the stress-strain state of thin-layer rubber-metal vibration absorber elements under nonlinear deformation,” Strength Mater., 50, No. 3, 387–395 (2018).CrossRef A. F. Bulat, V. I. Dyrda, M. I. Lysytsya, and S. M. Grebenyuk, “Numerical simulation of the stress-strain state of thin-layer rubber-metal vibration absorber elements under nonlinear deformation,” Strength Mater., 50, No. 3, 387–395 (2018).CrossRef
Metadata
Title
Methods for Evaluating the Characteristics of the Stress-Strain State of Seismic Blocks Under Operating Conditions
Authors
A. F. Bulat
V. I. Dyrda
S. N. Grebenyuk
G. N. Agal’tsov
Publication date
03-12-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 5/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00129-x

Other articles of this Issue 5/2019

Strength of Materials 5/2019 Go to the issue

Premium Partners