Skip to main content
Top

1999 | OriginalPaper | Chapter

Numerical study of spin-charge separation in one dimension

Authors : M. G. Zacher, E. Arrigoni, W. Hanke, J. R. Schrieffer

Published in: High Performance Computing in Science and Engineering ’98

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

The problem of spin-charge separation is analyzed numerically in the metallic phase of the one-band Hubbard model in one dimension by studying the behavior of the single-particle Green’s function and of the spin and charge susceptibilities. We first analyze the Quantum-Monte Carlo data for the imaginary-time Green’s function within the Maximum Entropy method in order to obtain the spectral function at real frequencies. For some values of the momentum sufficiently away from the Fermi surface two separate peaks are found, which can be identified as charge and spin excitations.In order to improve our accuracy and to be able to extend our study to a larger portion of the Brillouin zone, we also fit our data with the imaginary-time Green’s function obtained from the Luttinger-model solution with two different velocities as fitting parameters. The excitation energies associated with these velocities turn out to agree, in a broad range of momenta, with the ones calculated from the charge and spin susceptibilities. This allows us to identify these single-particle excitations as due to a separation of spin and charge. Remarkably, the range of momenta where spin-charge separation is seen extends well beyond the region of linear dispersion about the Fermi surface. We finally discuss a possible extension of our method to detect spin-charge separation numerically in two dimensions.

Metadata
Title
Numerical study of spin-charge separation in one dimension
Authors
M. G. Zacher
E. Arrigoni
W. Hanke
J. R. Schrieffer
Copyright Year
1999
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-58600-2_14

Premium Partner