Skip to main content
Top
Published in: Archive of Applied Mechanics 1/2020

01-10-2019 | Original

Numerical study on air-core vortex: analysis of generation mechanism

Authors: Nima Khoshkalam, Amir F. Najafi, Mohammad H. Rahimian, Franco Magagnato

Published in: Archive of Applied Mechanics | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An air-core vortex can be formed wherever water drains or discharges from a container. In some cases, detached bubbles or a complete air core can develop and subsequently enter the downstream equipment causing performance loss or even damage. In the present study, a numerical study and a physical discussion are done on the water draining out of a tank in order to determine why air-core vortex generates and on which factors it depends. The same condition as in the existing experiment was simulated numerically and validated by comparing against it. Subsequently, the numerical simulations are developed to alter physical and geometrical factors, i.e., wall rotation and surface tension both for laminar and turbulent flow regimes. It is realized that the generation of the air core depends on the action of drain and not to the environmental elements such as the effect of the surrounding walls. In fact, these elements can produce or destruct the angular momentum which plays a vital role in process of air-core vortex generation. Meanwhile, the fluid particle moves toward the drain port, and its angular velocity increases that it makes a narrow zone in the water having larger axial velocity and angular velocity with a lower pressure compared to the surrounding water. This narrow zone is the key factor, and when it develops, the free surface deforms and the air core generates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sankaranarayanan, R., Guthrie, R.: Slag entraining vortexing funnel formation during ladle teeming: similarity criteria and scale-up relationships. Ironmak. Steelmak. 29(2), 147–153 (2002) Sankaranarayanan, R., Guthrie, R.: Slag entraining vortexing funnel formation during ladle teeming: similarity criteria and scale-up relationships. Ironmak. Steelmak. 29(2), 147–153 (2002)
2.
go back to reference Zhang, L., Thomas, B.G.: State of the art in evaluation and control of steel cleanliness. ISIJ Int. 43(3), 271–291 (2003) Zhang, L., Thomas, B.G.: State of the art in evaluation and control of steel cleanliness. ISIJ Int. 43(3), 271–291 (2003)
3.
go back to reference Lakshmana Gowda, B., Joshy, P., Swarnamani, S.: Device to suppress vortexing during draining from cylindrical tanks. J. Spacecr. Rockets 33(4), 598–600 (1996) Lakshmana Gowda, B., Joshy, P., Swarnamani, S.: Device to suppress vortexing during draining from cylindrical tanks. J. Spacecr. Rockets 33(4), 598–600 (1996)
4.
go back to reference Knauss, J.: Swirling Flow Problems at Intakes (IAHR Hydraulic Structures Design Manual). Balkema, Rotterdam (1987) Knauss, J.: Swirling Flow Problems at Intakes (IAHR Hydraulic Structures Design Manual). Balkema, Rotterdam (1987)
5.
go back to reference Baum, M., Cook, M.: Gas entrainment at the free surface of a liquid: entrainment inception at a vortex with an unstable gas core. Nucl. Eng. Des. 32(2), 239–245 (1975) Baum, M., Cook, M.: Gas entrainment at the free surface of a liquid: entrainment inception at a vortex with an unstable gas core. Nucl. Eng. Des. 32(2), 239–245 (1975)
6.
go back to reference Ezure, T., Kimura, N., Miyakoshi, H., Kamide, H.: Experimental investigation on bubble characteristics entrained by surface vortex. Nucl. Eng. Des. 241(11), 4575–4584 (2011) Ezure, T., Kimura, N., Miyakoshi, H., Kamide, H.: Experimental investigation on bubble characteristics entrained by surface vortex. Nucl. Eng. Des. 241(11), 4575–4584 (2011)
7.
go back to reference Dyakowski, T., Williams, R.: Prediction of air-core size and shape in a hydrocyclone. Int. J. Miner. Process. 43(1–2), 1–14 (1995) Dyakowski, T., Williams, R.: Prediction of air-core size and shape in a hydrocyclone. Int. J. Miner. Process. 43(1–2), 1–14 (1995)
8.
go back to reference Timilsina, A.B., Mulligan, S., Bajracharya, T.R.: Water vortex hydropower technology: a state-of-the-art review of developmental trends. Clean Technol. Environ. Pol. 20, 1–24 (2018) Timilsina, A.B., Mulligan, S., Bajracharya, T.R.: Water vortex hydropower technology: a state-of-the-art review of developmental trends. Clean Technol. Environ. Pol. 20, 1–24 (2018)
9.
go back to reference Dhakal, S., Timilsina, A.B., Dhakal, R., Fuyal, D., Bajracharya, T.R., Pandit, H.P., Amatya, N., Nakarmi, A.M.: Comparison of cylindrical and conical basins with optimum position of runner: gravitational water vortex power plant. Renew. Sustain. Energy Rev. 48, 662–669 (2015) Dhakal, S., Timilsina, A.B., Dhakal, R., Fuyal, D., Bajracharya, T.R., Pandit, H.P., Amatya, N., Nakarmi, A.M.: Comparison of cylindrical and conical basins with optimum position of runner: gravitational water vortex power plant. Renew. Sustain. Energy Rev. 48, 662–669 (2015)
10.
go back to reference Yin, J., Li, J., Ma, Y., Li, H., Liu, W., Wang, D.: Study on the air core formation of a gas–liquid separator. J. Fluids Eng. 137(9), 091301 (2015) Yin, J., Li, J., Ma, Y., Li, H., Liu, W., Wang, D.: Study on the air core formation of a gas–liquid separator. J. Fluids Eng. 137(9), 091301 (2015)
11.
go back to reference Van Heijst, G.: Topography effects on vortices in a rotating fluid. Meccanica 29(4), 431–451 (1994)MathSciNetMATH Van Heijst, G.: Topography effects on vortices in a rotating fluid. Meccanica 29(4), 431–451 (1994)MathSciNetMATH
12.
go back to reference Shapiro, A.H.: Bath-tub vortex. Nature 196(4859), 1080–1081 (1962) Shapiro, A.H.: Bath-tub vortex. Nature 196(4859), 1080–1081 (1962)
13.
go back to reference Trefethen, L.M., Bilger, R., Fink, P., Luxton, R., Tanner, R.: The bath-tub vortex in the southern hemisphere. Nature 207(5001), 1084 (1965) Trefethen, L.M., Bilger, R., Fink, P., Luxton, R., Tanner, R.: The bath-tub vortex in the southern hemisphere. Nature 207(5001), 1084 (1965)
14.
go back to reference Sibulkin, M.: A note on the bathtub vortex. J. Fluid Mech. 14(1), 21–24 (1962) Sibulkin, M.: A note on the bathtub vortex. J. Fluid Mech. 14(1), 21–24 (1962)
15.
go back to reference Binnie, A.: Some experiments on the bath-tub vortex. J. Mech. Eng. Sci. 6(3), 256–257 (1964) Binnie, A.: Some experiments on the bath-tub vortex. J. Mech. Eng. Sci. 6(3), 256–257 (1964)
16.
go back to reference Echavez, G., McCann, E.: An experimental study on the free surface vertical vortex. Exp. Fluids 33(3), 414–421 (2002) Echavez, G., McCann, E.: An experimental study on the free surface vertical vortex. Exp. Fluids 33(3), 414–421 (2002)
17.
go back to reference Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: Anatomy of a bathtub vortex. Phys. Rev. Lett. 91(10), 104502 (2003) Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: Anatomy of a bathtub vortex. Phys. Rev. Lett. 91(10), 104502 (2003)
18.
go back to reference Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121–146 (2006)MATH Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121–146 (2006)MATH
19.
go back to reference Huang, S.-L., Chen, H.-C., Chu, C.-C., Chang, C.-C.: On the transition process of a swirling vortex generated in a rotating tank. Exp. Fluids 45(2), 267–282 (2008) Huang, S.-L., Chen, H.-C., Chu, C.-C., Chang, C.-C.: On the transition process of a swirling vortex generated in a rotating tank. Exp. Fluids 45(2), 267–282 (2008)
20.
go back to reference Tahershamsi, A., Rahimzadeh, H., Monshizadeh, M., Sarkardeh, H.: An experimental study on free surface vortex dynamics. Meccanica 53(13), 3269–3277 (2018) Tahershamsi, A., Rahimzadeh, H., Monshizadeh, M., Sarkardeh, H.: An experimental study on free surface vortex dynamics. Meccanica 53(13), 3269–3277 (2018)
21.
go back to reference Lubin, B.T., Springer, G.S.: The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech. 29(2), 385–390 (1967) Lubin, B.T., Springer, G.S.: The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech. 29(2), 385–390 (1967)
22.
go back to reference Zhou, Q.-N., Graebel, W.: Axisymmetric draining of a cylindrical tank with a free surface. J. Fluid Mech. 221, 511–532 (1990)MATH Zhou, Q.-N., Graebel, W.: Axisymmetric draining of a cylindrical tank with a free surface. J. Fluid Mech. 221, 511–532 (1990)MATH
23.
go back to reference Stepanyants, Y.A., Yeoh, G.H.: Stationary bathtub vortices and a critical regime of liquid discharge. J. Fluid Mech. 604, 77–98 (2008)MathSciNetMATH Stepanyants, Y.A., Yeoh, G.H.: Stationary bathtub vortices and a critical regime of liquid discharge. J. Fluid Mech. 604, 77–98 (2008)MathSciNetMATH
24.
go back to reference Lundgren, T.: The vortical flow above the drain-hole in a rotating vessel. J. Fluid Mech. 155, 381–412 (1985)MATH Lundgren, T.: The vortical flow above the drain-hole in a rotating vessel. J. Fluid Mech. 155, 381–412 (1985)MATH
25.
go back to reference Odgaard, A.J.: Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610–620 (1986) Odgaard, A.J.: Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610–620 (1986)
26.
go back to reference Hite Jr., J.E., Mih, W.C.: Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. 120(3), 284–297 (1994) Hite Jr., J.E., Mih, W.C.: Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. 120(3), 284–297 (1994)
27.
go back to reference Ramamurthi, K., Tharakan, T.: Shaped discharge ports for draining liquids. J. Spacecr. Rockets 30(6), 786–788 (1993) Ramamurthi, K., Tharakan, T.: Shaped discharge ports for draining liquids. J. Spacecr. Rockets 30(6), 786–788 (1993)
28.
go back to reference Ramamurthi, K., Tharakan, T.: Flow visualisation experiments on free draining of a rotating column of liquid using nets and tufts. Exp. Fluids 21(2), 139–142 (1996) Ramamurthi, K., Tharakan, T.: Flow visualisation experiments on free draining of a rotating column of liquid using nets and tufts. Exp. Fluids 21(2), 139–142 (1996)
29.
go back to reference Gowda, B.L.: Draining of liquid from tanks of square or rectangular cross sections. J. Spacecr. Rockets 33(2), 311–312 (1996) Gowda, B.L.: Draining of liquid from tanks of square or rectangular cross sections. J. Spacecr. Rockets 33(2), 311–312 (1996)
30.
go back to reference Ajith Kumar, R., Nair, R.R., Prabhu, M., Srikrishnan, A.: Vortex formation during draining from cylindrical tanks: effect of drain port eccentricity. J. Aerosp. Eng. 30(5), 06017001 (2017) Ajith Kumar, R., Nair, R.R., Prabhu, M., Srikrishnan, A.: Vortex formation during draining from cylindrical tanks: effect of drain port eccentricity. J. Aerosp. Eng. 30(5), 06017001 (2017)
31.
go back to reference Li, H-f, Chen, H-x, Ma, Z., Zhou, Y.: Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491 (2008) Li, H-f, Chen, H-x, Ma, Z., Zhou, Y.: Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491 (2008)
32.
go back to reference Yukimoto, S., Niino, H., Noguchi, T., Kimura, R., Moulin, F.Y.: Structure of a bathtub vortex: importance of the bottom boundary layer. Theoret. Comput. Fluid Dyn. 24(1–4), 323–327 (2010)MATH Yukimoto, S., Niino, H., Noguchi, T., Kimura, R., Moulin, F.Y.: Structure of a bathtub vortex: importance of the bottom boundary layer. Theoret. Comput. Fluid Dyn. 24(1–4), 323–327 (2010)MATH
33.
go back to reference Park, I.S., Sohn, C.H.: Experimental and numerical study on air cores for cylindrical tank draining. Int. Commun. Heat Mass Transf. 38(8), 1044–1049 (2011) Park, I.S., Sohn, C.H.: Experimental and numerical study on air cores for cylindrical tank draining. Int. Commun. Heat Mass Transf. 38(8), 1044–1049 (2011)
34.
go back to reference Mathew, S., Patnaik, B., Tharakan, TJ.: Numerical simulation of air-core vortex and its dynamics during liquid draining from a cylindrical tank. In: 14th Annual CFD Symposium, 2012, Bangalore Mathew, S., Patnaik, B., Tharakan, TJ.: Numerical simulation of air-core vortex and its dynamics during liquid draining from a cylindrical tank. In: 14th Annual CFD Symposium, 2012, Bangalore
35.
go back to reference Sohn, C.H., Son, J.H., Park, I.S.: Numerical analysis of vortex core phenomenon during draining from cylinder tank for various initial swirling speeds and various tank and drain port sizes. J. Hydrodyn. 25(2), 183–195 (2013) Sohn, C.H., Son, J.H., Park, I.S.: Numerical analysis of vortex core phenomenon during draining from cylinder tank for various initial swirling speeds and various tank and drain port sizes. J. Hydrodyn. 25(2), 183–195 (2013)
36.
go back to reference Son, J.H., Sohn, C.H., Park, I.S.: Numerical study of 3-D air core phenomenon during liquid draining. J. Mech. Sci. Technol. 29(10), 4247–4257 (2015) Son, J.H., Sohn, C.H., Park, I.S.: Numerical study of 3-D air core phenomenon during liquid draining. J. Mech. Sci. Technol. 29(10), 4247–4257 (2015)
37.
go back to reference Nazir, K., Sohn, C.H.: Effect of water temperature on air-core generation and disappearance during draining. J. Mech. Sci. Technol. 32(2), 703–708 (2018) Nazir, K., Sohn, C.H.: Effect of water temperature on air-core generation and disappearance during draining. J. Mech. Sci. Technol. 32(2), 703–708 (2018)
38.
go back to reference Ahmed, R., Lim, H.: Study of air-core vortical flow structure induced by a plughole vortex. J. Fluid Mech. 823, 787–818 (2017)MathSciNetMATH Ahmed, R., Lim, H.: Study of air-core vortical flow structure induced by a plughole vortex. J. Fluid Mech. 823, 787–818 (2017)MathSciNetMATH
39.
go back to reference Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)MATH Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)MATH
40.
go back to reference Theodorakakos, A., Bergeles, G.: Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface. Int. J. Numer. Meth. Fluids 45(4), 421–439 (2004)MATH Theodorakakos, A., Bergeles, G.: Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface. Int. J. Numer. Meth. Fluids 45(4), 421–439 (2004)MATH
41.
go back to reference Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetMATH Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetMATH
42.
go back to reference Engdar, U., Klingmann, J.: Investigation of two-equation turbulence models applied to a confined axis-symmetric swirling flow. In: ASME 2002 Pressure Vessels and Piping Conference, 2002. American Society of Mechanical Engineers, pp. 199–206 Engdar, U., Klingmann, J.: Investigation of two-equation turbulence models applied to a confined axis-symmetric swirling flow. In: ASME 2002 Pressure Vessels and Piping Conference, 2002. American Society of Mechanical Engineers, pp. 199–206
43.
go back to reference Miltner, M., Jordan, C., Harasek, M.: CFD simulation of straight and slightly swirling turbulent free jets using different RANS-turbulence models. Appl. Therm. Eng. 89, 1117–112 (2015) Miltner, M., Jordan, C., Harasek, M.: CFD simulation of straight and slightly swirling turbulent free jets using different RANS-turbulence models. Appl. Therm. Eng. 89, 1117–112 (2015)
44.
go back to reference Najafi, A., Saidi, M., Sadeghipour, M., Souhar, M.: Numerical analysis of turbulent swirling decay pipe flow. Int. Commun. Heat Mass Transf. 32(5), 627–638 (2005)MATH Najafi, A., Saidi, M., Sadeghipour, M., Souhar, M.: Numerical analysis of turbulent swirling decay pipe flow. Int. Commun. Heat Mass Transf. 32(5), 627–638 (2005)MATH
45.
go back to reference Mousavian, S., Najafi, A.: Influence of geometry on separation efficiency in a hydrocyclone. Arch. Appl. Mech. 79(11), 1033–1050 (2009)MATH Mousavian, S., Najafi, A.: Influence of geometry on separation efficiency in a hydrocyclone. Arch. Appl. Mech. 79(11), 1033–1050 (2009)MATH
46.
go back to reference Mousavian, S., Najafi, A.: Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator. Arch. Appl. Mech. 79(5), 395 (2009)MATH Mousavian, S., Najafi, A.: Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator. Arch. Appl. Mech. 79(5), 395 (2009)MATH
47.
go back to reference Delgadillo, J.A., Rajamani, R.K.: A comparative study of three turbulence-closure models for the hydrocyclone problem. Int. J. Miner. Process. 77(4), 217–230 (2005) Delgadillo, J.A., Rajamani, R.K.: A comparative study of three turbulence-closure models for the hydrocyclone problem. Int. J. Miner. Process. 77(4), 217–230 (2005)
48.
go back to reference Nowakowski, A., Cullivan, J., Williams, R., Dyakowski, T.: Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? Minerals Engineering 17(5), 661–669 (2004) Nowakowski, A., Cullivan, J., Williams, R., Dyakowski, T.: Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? Minerals Engineering 17(5), 661–669 (2004)
Metadata
Title
Numerical study on air-core vortex: analysis of generation mechanism
Authors
Nima Khoshkalam
Amir F. Najafi
Mohammad H. Rahimian
Franco Magagnato
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 1/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01596-z

Other articles of this Issue 1/2020

Archive of Applied Mechanics 1/2020 Go to the issue

Premium Partners