Skip to main content
Erschienen in: Archive of Applied Mechanics 1/2020

01.10.2019 | Original

Numerical study on air-core vortex: analysis of generation mechanism

verfasst von: Nima Khoshkalam, Amir F. Najafi, Mohammad H. Rahimian, Franco Magagnato

Erschienen in: Archive of Applied Mechanics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An air-core vortex can be formed wherever water drains or discharges from a container. In some cases, detached bubbles or a complete air core can develop and subsequently enter the downstream equipment causing performance loss or even damage. In the present study, a numerical study and a physical discussion are done on the water draining out of a tank in order to determine why air-core vortex generates and on which factors it depends. The same condition as in the existing experiment was simulated numerically and validated by comparing against it. Subsequently, the numerical simulations are developed to alter physical and geometrical factors, i.e., wall rotation and surface tension both for laminar and turbulent flow regimes. It is realized that the generation of the air core depends on the action of drain and not to the environmental elements such as the effect of the surrounding walls. In fact, these elements can produce or destruct the angular momentum which plays a vital role in process of air-core vortex generation. Meanwhile, the fluid particle moves toward the drain port, and its angular velocity increases that it makes a narrow zone in the water having larger axial velocity and angular velocity with a lower pressure compared to the surrounding water. This narrow zone is the key factor, and when it develops, the free surface deforms and the air core generates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sankaranarayanan, R., Guthrie, R.: Slag entraining vortexing funnel formation during ladle teeming: similarity criteria and scale-up relationships. Ironmak. Steelmak. 29(2), 147–153 (2002) Sankaranarayanan, R., Guthrie, R.: Slag entraining vortexing funnel formation during ladle teeming: similarity criteria and scale-up relationships. Ironmak. Steelmak. 29(2), 147–153 (2002)
2.
Zurück zum Zitat Zhang, L., Thomas, B.G.: State of the art in evaluation and control of steel cleanliness. ISIJ Int. 43(3), 271–291 (2003) Zhang, L., Thomas, B.G.: State of the art in evaluation and control of steel cleanliness. ISIJ Int. 43(3), 271–291 (2003)
3.
Zurück zum Zitat Lakshmana Gowda, B., Joshy, P., Swarnamani, S.: Device to suppress vortexing during draining from cylindrical tanks. J. Spacecr. Rockets 33(4), 598–600 (1996) Lakshmana Gowda, B., Joshy, P., Swarnamani, S.: Device to suppress vortexing during draining from cylindrical tanks. J. Spacecr. Rockets 33(4), 598–600 (1996)
4.
Zurück zum Zitat Knauss, J.: Swirling Flow Problems at Intakes (IAHR Hydraulic Structures Design Manual). Balkema, Rotterdam (1987) Knauss, J.: Swirling Flow Problems at Intakes (IAHR Hydraulic Structures Design Manual). Balkema, Rotterdam (1987)
5.
Zurück zum Zitat Baum, M., Cook, M.: Gas entrainment at the free surface of a liquid: entrainment inception at a vortex with an unstable gas core. Nucl. Eng. Des. 32(2), 239–245 (1975) Baum, M., Cook, M.: Gas entrainment at the free surface of a liquid: entrainment inception at a vortex with an unstable gas core. Nucl. Eng. Des. 32(2), 239–245 (1975)
6.
Zurück zum Zitat Ezure, T., Kimura, N., Miyakoshi, H., Kamide, H.: Experimental investigation on bubble characteristics entrained by surface vortex. Nucl. Eng. Des. 241(11), 4575–4584 (2011) Ezure, T., Kimura, N., Miyakoshi, H., Kamide, H.: Experimental investigation on bubble characteristics entrained by surface vortex. Nucl. Eng. Des. 241(11), 4575–4584 (2011)
7.
Zurück zum Zitat Dyakowski, T., Williams, R.: Prediction of air-core size and shape in a hydrocyclone. Int. J. Miner. Process. 43(1–2), 1–14 (1995) Dyakowski, T., Williams, R.: Prediction of air-core size and shape in a hydrocyclone. Int. J. Miner. Process. 43(1–2), 1–14 (1995)
8.
Zurück zum Zitat Timilsina, A.B., Mulligan, S., Bajracharya, T.R.: Water vortex hydropower technology: a state-of-the-art review of developmental trends. Clean Technol. Environ. Pol. 20, 1–24 (2018) Timilsina, A.B., Mulligan, S., Bajracharya, T.R.: Water vortex hydropower technology: a state-of-the-art review of developmental trends. Clean Technol. Environ. Pol. 20, 1–24 (2018)
9.
Zurück zum Zitat Dhakal, S., Timilsina, A.B., Dhakal, R., Fuyal, D., Bajracharya, T.R., Pandit, H.P., Amatya, N., Nakarmi, A.M.: Comparison of cylindrical and conical basins with optimum position of runner: gravitational water vortex power plant. Renew. Sustain. Energy Rev. 48, 662–669 (2015) Dhakal, S., Timilsina, A.B., Dhakal, R., Fuyal, D., Bajracharya, T.R., Pandit, H.P., Amatya, N., Nakarmi, A.M.: Comparison of cylindrical and conical basins with optimum position of runner: gravitational water vortex power plant. Renew. Sustain. Energy Rev. 48, 662–669 (2015)
10.
Zurück zum Zitat Yin, J., Li, J., Ma, Y., Li, H., Liu, W., Wang, D.: Study on the air core formation of a gas–liquid separator. J. Fluids Eng. 137(9), 091301 (2015) Yin, J., Li, J., Ma, Y., Li, H., Liu, W., Wang, D.: Study on the air core formation of a gas–liquid separator. J. Fluids Eng. 137(9), 091301 (2015)
11.
Zurück zum Zitat Van Heijst, G.: Topography effects on vortices in a rotating fluid. Meccanica 29(4), 431–451 (1994)MathSciNetMATH Van Heijst, G.: Topography effects on vortices in a rotating fluid. Meccanica 29(4), 431–451 (1994)MathSciNetMATH
12.
Zurück zum Zitat Shapiro, A.H.: Bath-tub vortex. Nature 196(4859), 1080–1081 (1962) Shapiro, A.H.: Bath-tub vortex. Nature 196(4859), 1080–1081 (1962)
13.
Zurück zum Zitat Trefethen, L.M., Bilger, R., Fink, P., Luxton, R., Tanner, R.: The bath-tub vortex in the southern hemisphere. Nature 207(5001), 1084 (1965) Trefethen, L.M., Bilger, R., Fink, P., Luxton, R., Tanner, R.: The bath-tub vortex in the southern hemisphere. Nature 207(5001), 1084 (1965)
14.
Zurück zum Zitat Sibulkin, M.: A note on the bathtub vortex. J. Fluid Mech. 14(1), 21–24 (1962) Sibulkin, M.: A note on the bathtub vortex. J. Fluid Mech. 14(1), 21–24 (1962)
15.
Zurück zum Zitat Binnie, A.: Some experiments on the bath-tub vortex. J. Mech. Eng. Sci. 6(3), 256–257 (1964) Binnie, A.: Some experiments on the bath-tub vortex. J. Mech. Eng. Sci. 6(3), 256–257 (1964)
16.
Zurück zum Zitat Echavez, G., McCann, E.: An experimental study on the free surface vertical vortex. Exp. Fluids 33(3), 414–421 (2002) Echavez, G., McCann, E.: An experimental study on the free surface vertical vortex. Exp. Fluids 33(3), 414–421 (2002)
17.
Zurück zum Zitat Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: Anatomy of a bathtub vortex. Phys. Rev. Lett. 91(10), 104502 (2003) Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: Anatomy of a bathtub vortex. Phys. Rev. Lett. 91(10), 104502 (2003)
18.
Zurück zum Zitat Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121–146 (2006)MATH Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B.: The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121–146 (2006)MATH
19.
Zurück zum Zitat Huang, S.-L., Chen, H.-C., Chu, C.-C., Chang, C.-C.: On the transition process of a swirling vortex generated in a rotating tank. Exp. Fluids 45(2), 267–282 (2008) Huang, S.-L., Chen, H.-C., Chu, C.-C., Chang, C.-C.: On the transition process of a swirling vortex generated in a rotating tank. Exp. Fluids 45(2), 267–282 (2008)
20.
Zurück zum Zitat Tahershamsi, A., Rahimzadeh, H., Monshizadeh, M., Sarkardeh, H.: An experimental study on free surface vortex dynamics. Meccanica 53(13), 3269–3277 (2018) Tahershamsi, A., Rahimzadeh, H., Monshizadeh, M., Sarkardeh, H.: An experimental study on free surface vortex dynamics. Meccanica 53(13), 3269–3277 (2018)
21.
Zurück zum Zitat Lubin, B.T., Springer, G.S.: The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech. 29(2), 385–390 (1967) Lubin, B.T., Springer, G.S.: The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech. 29(2), 385–390 (1967)
22.
Zurück zum Zitat Zhou, Q.-N., Graebel, W.: Axisymmetric draining of a cylindrical tank with a free surface. J. Fluid Mech. 221, 511–532 (1990)MATH Zhou, Q.-N., Graebel, W.: Axisymmetric draining of a cylindrical tank with a free surface. J. Fluid Mech. 221, 511–532 (1990)MATH
23.
Zurück zum Zitat Stepanyants, Y.A., Yeoh, G.H.: Stationary bathtub vortices and a critical regime of liquid discharge. J. Fluid Mech. 604, 77–98 (2008)MathSciNetMATH Stepanyants, Y.A., Yeoh, G.H.: Stationary bathtub vortices and a critical regime of liquid discharge. J. Fluid Mech. 604, 77–98 (2008)MathSciNetMATH
24.
Zurück zum Zitat Lundgren, T.: The vortical flow above the drain-hole in a rotating vessel. J. Fluid Mech. 155, 381–412 (1985)MATH Lundgren, T.: The vortical flow above the drain-hole in a rotating vessel. J. Fluid Mech. 155, 381–412 (1985)MATH
25.
Zurück zum Zitat Odgaard, A.J.: Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610–620 (1986) Odgaard, A.J.: Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610–620 (1986)
26.
Zurück zum Zitat Hite Jr., J.E., Mih, W.C.: Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. 120(3), 284–297 (1994) Hite Jr., J.E., Mih, W.C.: Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. 120(3), 284–297 (1994)
27.
Zurück zum Zitat Ramamurthi, K., Tharakan, T.: Shaped discharge ports for draining liquids. J. Spacecr. Rockets 30(6), 786–788 (1993) Ramamurthi, K., Tharakan, T.: Shaped discharge ports for draining liquids. J. Spacecr. Rockets 30(6), 786–788 (1993)
28.
Zurück zum Zitat Ramamurthi, K., Tharakan, T.: Flow visualisation experiments on free draining of a rotating column of liquid using nets and tufts. Exp. Fluids 21(2), 139–142 (1996) Ramamurthi, K., Tharakan, T.: Flow visualisation experiments on free draining of a rotating column of liquid using nets and tufts. Exp. Fluids 21(2), 139–142 (1996)
29.
Zurück zum Zitat Gowda, B.L.: Draining of liquid from tanks of square or rectangular cross sections. J. Spacecr. Rockets 33(2), 311–312 (1996) Gowda, B.L.: Draining of liquid from tanks of square or rectangular cross sections. J. Spacecr. Rockets 33(2), 311–312 (1996)
30.
Zurück zum Zitat Ajith Kumar, R., Nair, R.R., Prabhu, M., Srikrishnan, A.: Vortex formation during draining from cylindrical tanks: effect of drain port eccentricity. J. Aerosp. Eng. 30(5), 06017001 (2017) Ajith Kumar, R., Nair, R.R., Prabhu, M., Srikrishnan, A.: Vortex formation during draining from cylindrical tanks: effect of drain port eccentricity. J. Aerosp. Eng. 30(5), 06017001 (2017)
31.
Zurück zum Zitat Li, H-f, Chen, H-x, Ma, Z., Zhou, Y.: Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491 (2008) Li, H-f, Chen, H-x, Ma, Z., Zhou, Y.: Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491 (2008)
32.
Zurück zum Zitat Yukimoto, S., Niino, H., Noguchi, T., Kimura, R., Moulin, F.Y.: Structure of a bathtub vortex: importance of the bottom boundary layer. Theoret. Comput. Fluid Dyn. 24(1–4), 323–327 (2010)MATH Yukimoto, S., Niino, H., Noguchi, T., Kimura, R., Moulin, F.Y.: Structure of a bathtub vortex: importance of the bottom boundary layer. Theoret. Comput. Fluid Dyn. 24(1–4), 323–327 (2010)MATH
33.
Zurück zum Zitat Park, I.S., Sohn, C.H.: Experimental and numerical study on air cores for cylindrical tank draining. Int. Commun. Heat Mass Transf. 38(8), 1044–1049 (2011) Park, I.S., Sohn, C.H.: Experimental and numerical study on air cores for cylindrical tank draining. Int. Commun. Heat Mass Transf. 38(8), 1044–1049 (2011)
34.
Zurück zum Zitat Mathew, S., Patnaik, B., Tharakan, TJ.: Numerical simulation of air-core vortex and its dynamics during liquid draining from a cylindrical tank. In: 14th Annual CFD Symposium, 2012, Bangalore Mathew, S., Patnaik, B., Tharakan, TJ.: Numerical simulation of air-core vortex and its dynamics during liquid draining from a cylindrical tank. In: 14th Annual CFD Symposium, 2012, Bangalore
35.
Zurück zum Zitat Sohn, C.H., Son, J.H., Park, I.S.: Numerical analysis of vortex core phenomenon during draining from cylinder tank for various initial swirling speeds and various tank and drain port sizes. J. Hydrodyn. 25(2), 183–195 (2013) Sohn, C.H., Son, J.H., Park, I.S.: Numerical analysis of vortex core phenomenon during draining from cylinder tank for various initial swirling speeds and various tank and drain port sizes. J. Hydrodyn. 25(2), 183–195 (2013)
36.
Zurück zum Zitat Son, J.H., Sohn, C.H., Park, I.S.: Numerical study of 3-D air core phenomenon during liquid draining. J. Mech. Sci. Technol. 29(10), 4247–4257 (2015) Son, J.H., Sohn, C.H., Park, I.S.: Numerical study of 3-D air core phenomenon during liquid draining. J. Mech. Sci. Technol. 29(10), 4247–4257 (2015)
37.
Zurück zum Zitat Nazir, K., Sohn, C.H.: Effect of water temperature on air-core generation and disappearance during draining. J. Mech. Sci. Technol. 32(2), 703–708 (2018) Nazir, K., Sohn, C.H.: Effect of water temperature on air-core generation and disappearance during draining. J. Mech. Sci. Technol. 32(2), 703–708 (2018)
38.
Zurück zum Zitat Ahmed, R., Lim, H.: Study of air-core vortical flow structure induced by a plughole vortex. J. Fluid Mech. 823, 787–818 (2017)MathSciNetMATH Ahmed, R., Lim, H.: Study of air-core vortical flow structure induced by a plughole vortex. J. Fluid Mech. 823, 787–818 (2017)MathSciNetMATH
39.
Zurück zum Zitat Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)MATH Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)MATH
40.
Zurück zum Zitat Theodorakakos, A., Bergeles, G.: Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface. Int. J. Numer. Meth. Fluids 45(4), 421–439 (2004)MATH Theodorakakos, A., Bergeles, G.: Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface. Int. J. Numer. Meth. Fluids 45(4), 421–439 (2004)MATH
41.
Zurück zum Zitat Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetMATH Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetMATH
42.
Zurück zum Zitat Engdar, U., Klingmann, J.: Investigation of two-equation turbulence models applied to a confined axis-symmetric swirling flow. In: ASME 2002 Pressure Vessels and Piping Conference, 2002. American Society of Mechanical Engineers, pp. 199–206 Engdar, U., Klingmann, J.: Investigation of two-equation turbulence models applied to a confined axis-symmetric swirling flow. In: ASME 2002 Pressure Vessels and Piping Conference, 2002. American Society of Mechanical Engineers, pp. 199–206
43.
Zurück zum Zitat Miltner, M., Jordan, C., Harasek, M.: CFD simulation of straight and slightly swirling turbulent free jets using different RANS-turbulence models. Appl. Therm. Eng. 89, 1117–112 (2015) Miltner, M., Jordan, C., Harasek, M.: CFD simulation of straight and slightly swirling turbulent free jets using different RANS-turbulence models. Appl. Therm. Eng. 89, 1117–112 (2015)
44.
Zurück zum Zitat Najafi, A., Saidi, M., Sadeghipour, M., Souhar, M.: Numerical analysis of turbulent swirling decay pipe flow. Int. Commun. Heat Mass Transf. 32(5), 627–638 (2005)MATH Najafi, A., Saidi, M., Sadeghipour, M., Souhar, M.: Numerical analysis of turbulent swirling decay pipe flow. Int. Commun. Heat Mass Transf. 32(5), 627–638 (2005)MATH
45.
Zurück zum Zitat Mousavian, S., Najafi, A.: Influence of geometry on separation efficiency in a hydrocyclone. Arch. Appl. Mech. 79(11), 1033–1050 (2009)MATH Mousavian, S., Najafi, A.: Influence of geometry on separation efficiency in a hydrocyclone. Arch. Appl. Mech. 79(11), 1033–1050 (2009)MATH
46.
Zurück zum Zitat Mousavian, S., Najafi, A.: Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator. Arch. Appl. Mech. 79(5), 395 (2009)MATH Mousavian, S., Najafi, A.: Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator. Arch. Appl. Mech. 79(5), 395 (2009)MATH
47.
Zurück zum Zitat Delgadillo, J.A., Rajamani, R.K.: A comparative study of three turbulence-closure models for the hydrocyclone problem. Int. J. Miner. Process. 77(4), 217–230 (2005) Delgadillo, J.A., Rajamani, R.K.: A comparative study of three turbulence-closure models for the hydrocyclone problem. Int. J. Miner. Process. 77(4), 217–230 (2005)
48.
Zurück zum Zitat Nowakowski, A., Cullivan, J., Williams, R., Dyakowski, T.: Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? Minerals Engineering 17(5), 661–669 (2004) Nowakowski, A., Cullivan, J., Williams, R., Dyakowski, T.: Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge? Minerals Engineering 17(5), 661–669 (2004)
Metadaten
Titel
Numerical study on air-core vortex: analysis of generation mechanism
verfasst von
Nima Khoshkalam
Amir F. Najafi
Mohammad H. Rahimian
Franco Magagnato
Publikationsdatum
01.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 1/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01596-z

Weitere Artikel der Ausgabe 1/2020

Archive of Applied Mechanics 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.