Skip to main content
Top

2021 | OriginalPaper | Chapter

NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework

Authors : Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, Sanjay Choudhry

Published in: Computational Science – ICCS 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present SimNet, an AI-driven multi-physics simulation framework, to accelerate simulations across a wide range of disciplines in science and engineering. Compared to traditional numerical solvers, SimNet addresses a wide range of use cases - coupled forward simulations without any training data, inverse and data assimilation problems. SimNet offers fast turnaround time by enabling parameterized system representation that solves for multiple configurations simultaneously, as opposed to the traditional solvers that solve for one configuration at a time. SimNet is integrated with parameterized constructive solid geometry as well as STL modules to generate point clouds. Furthermore, it is customizable with APIs that enable user extensions to geometry, physics and network architecture. It has advanced network architectures that are optimized for high-performance GPU computing, and offers scalable performance for multi-GPU and multi-Node implementation with accelerated linear algebra as well as FP32, FP64 and TF32 computations. In this paper we review the neural network solver methodology, the SimNet architecture, and the various features that are needed for effective solution of the PDEs. We present real-world use cases that range from challenging forward multi-physics simulations with turbulence and complex 3D geometries, to industrial design optimization and inverse problems that are not addressed efficiently by the traditional solvers. Extensive comparisons of SimNet results with open source and commercial solvers show good correlation. The SimNet source code is available at https://​developer.​nvidia.​com/​simnet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 481–490 (2016) Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 481–490 (2016)
2.
go back to reference Hennigh, O.: Lat-Net: compressing lattice Boltzmann flow simulations using deep neural networks. arXiv preprint arXiv:1705.09036 (2017) Hennigh, O.: Lat-Net: compressing lattice Boltzmann flow simulations using deep neural networks. arXiv preprint arXiv:​1705.​09036 (2017)
3.
go back to reference Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
4.
go back to reference Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)
5.
go back to reference Sirignano, Justin, Spiliopoulos, Konstantinos: Dgm: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetCrossRef Sirignano, Justin, Spiliopoulos, Konstantinos: Dgm: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetCrossRef
6.
go back to reference Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-vpinns: variational physics-informed neural networks with domain decomposition. arXiv preprint arXiv:2003.05385 (2020) Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-vpinns: variational physics-informed neural networks with domain decomposition. arXiv preprint arXiv:​2003.​05385 (2020)
7.
go back to reference Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)MathSciNetCrossRef Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)MathSciNetCrossRef
8.
go back to reference Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:2001.04536 (2020) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:​2001.​04536 (2020)
9.
go back to reference Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. arXiv preprint arXiv:1907.04502 (2019) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. arXiv preprint arXiv:​1907.​04502 (2019)
10.
go back to reference Haghighat, E., Juanes, R.: Sciann: a keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks. arXiv preprint arXiv:2005.08803 (2020) Haghighat, E., Juanes, R.: Sciann: a keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks. arXiv preprint arXiv:​2005.​08803 (2020)
11.
go back to reference Rackauckas, C., Nie, Q.: Differentialequations.jl — a performant and feature-rich ecosystem for solving differential equations in julia. J. Open Res. Softw. 5(1) (2017). https://app.dimensions.ai Rackauckas, C., Nie, Q.: Differentialequations.jl — a performant and feature-rich ecosystem for solving differential equations in julia. J. Open Res. Softw. 5(1) (2017). https://​app.​dimensions.​ai
12.
go back to reference Wilcox, D.C., et al.: Turbulence Modeling for CFD. volume 2. DCW industries La Canada, CA (1998) Wilcox, D.C., et al.: Turbulence Modeling for CFD. volume 2. DCW industries La Canada, CA (1998)
13.
go back to reference Meurer, A., et al. Sympy: symbolic computing in python. PeerJ Comput. Sci. 3, e103 (2017) Meurer, A., et al. Sympy: symbolic computing in python. PeerJ Comput. Sci. 3, e103 (2017)
14.
go back to reference Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. arXiv preprint arXiv:2006.09661 (2020) Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. arXiv preprint arXiv:​2006.​09661 (2020)
15.
go back to reference Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310 (2019) Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310 (2019)
16.
go back to reference Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739 (2020) Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:​2006.​10739 (2020)
18.
go back to reference Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020) Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020)
19.
go back to reference Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019) Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019)
Metadata
Title
NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework
Authors
Oliver Hennigh
Susheela Narasimhan
Mohammad Amin Nabian
Akshay Subramaniam
Kaustubh Tangsali
Zhiwei Fang
Max Rietmann
Wonmin Byeon
Sanjay Choudhry
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-77977-1_36

Premium Partner