Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Oceans and Rapid Climate Change

Authors : Wei Liu, Alexey Fedorov

Published in: From Hurricanes to Epidemics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A key component of global ocean circulation, the Atlantic Meridional Overturning Circulation (AMOC), is believed to play an important role in abrupt climate changes, both in the past and potentially in the future. As a nonlinear system, the AMOC has multiple equilibrium states characterized by different AMOC strengths, and it has been hypothesized that past abrupt climate changes, including the warm Dansgaard-Oeschger and cold Heinrich events, were related to the transition between such states. The question arises whether an abrupt climate change caused by the AMOC shift could also occur in the future as a result of anthropogenic global warming. Answering this question is complicated by the fact that state-of-the-art coupled climate models typically simulate a mono-stable AMOC for modern climate conditions, which contradicts observationally based indicators suggesting that the AMOC may be bi-stable (i.e., having two stable equilibria). This stability bias is largely due to a common model bias in tropical precipitation—the double Intertropical Convergence Zone problem distorting the Atlantic freshwater budget. After correcting this bias, we find that the AMOC can rapidly weaken and then collapse in experiments with CO2 doubling, which suggests that the risk of AMOC shutdown in the future should not be underestimated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 1519–1522.CrossRef Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 1519–1522.CrossRef
2.
go back to reference Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., & McCarthy, G. D. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45, 1527–1533.CrossRef Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., & McCarthy, G. D. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45, 1527–1533.CrossRef
3.
go back to reference Srokosz, M. A., & Bryden, H. L. (2015). Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575.CrossRef Srokosz, M. A., & Bryden, H. L. (2015). Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575.CrossRef
4.
go back to reference Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V., & Wood, R. A. (2015). Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45, 3299–3316.CrossRef Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V., & Wood, R. A. (2015). Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45, 3299–3316.CrossRef
5.
go back to reference Zhang, R., & Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853–1860.CrossRef Zhang, R., & Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853–1860.CrossRef
6.
go back to reference Schuster, U., & Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.CrossRef Schuster, U., & Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.CrossRef
7.
go back to reference Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8, 1695.CrossRef Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8, 1695.CrossRef
8.
go back to reference Schmittner, A. (2005). Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628–633.CrossRef Schmittner, A. (2005). Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628–633.CrossRef
9.
go back to reference Timmermann, A., Okumura, Y., An, S., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S., & Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate, 20, 4899–4919.CrossRef Timmermann, A., Okumura, Y., An, S., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S., & Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate, 20, 4899–4919.CrossRef
10.
go back to reference Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 383, 218–220.CrossRef Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 383, 218–220.CrossRef
11.
go back to reference Clark, P., Pisias, N., Stocher, T., & Weaver, A. (2002). The role of the thermohaline circulation in abrupt climate change. Nature, 451, 863–869.CrossRef Clark, P., Pisias, N., Stocher, T., & Weaver, A. (2002). The role of the thermohaline circulation in abrupt climate change. Nature, 451, 863–869.CrossRef
12.
go back to reference Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., & Cheng, J. (2009). Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310–314.CrossRef Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., & Cheng, J. (2009). Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310–314.CrossRef
13.
go back to reference Hughen, K. A., Overpeck, J. T., Peterson, L. C., & Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54.CrossRef Hughen, K. A., Overpeck, J. T., Peterson, L. C., & Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54.CrossRef
14.
go back to reference Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087.CrossRef Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087.CrossRef
15.
go back to reference Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., & Bender, M. L. (1998). Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141–146.CrossRef Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., & Bender, M. L. (1998). Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141–146.CrossRef
16.
go back to reference EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–198.CrossRef EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–198.CrossRef
17.
go back to reference WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–665.CrossRef WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–665.CrossRef
18.
go back to reference Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53.CrossRef Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53.CrossRef
19.
go back to reference Liu, W., & Hu, A. (2015). The role of the PMOC in modulating the deglacial shift of the ITCZ. Climate Dynamics, 45, 3019–3034.CrossRef Liu, W., & Hu, A. (2015). The role of the PMOC in modulating the deglacial shift of the ITCZ. Climate Dynamics, 45, 3019–3034.CrossRef
20.
go back to reference Crowley, T. (1992). North Atlantic deepwater cools the southern hemisphere. Paleoceanography, 7, 489–497.CrossRef Crowley, T. (1992). North Atlantic deepwater cools the southern hemisphere. Paleoceanography, 7, 489–497.CrossRef
21.
go back to reference Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9, 83–104.CrossRef Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9, 83–104.CrossRef
22.
go back to reference Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., & Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–554.CrossRef Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., & Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–554.CrossRef
23.
go back to reference Broecker, W. S., Peteet, D., & Rind, D. (1985). Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 21–26.CrossRef Broecker, W. S., Peteet, D., & Rind, D. (1985). Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 21–26.CrossRef
24.
go back to reference Ganopolski, A., & Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153–158.CrossRef Ganopolski, A., & Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153–158.CrossRef
25.
go back to reference Peltier, W. R., & Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophysical Research Letters, 41, 7306–7313.CrossRef Peltier, W. R., & Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophysical Research Letters, 41, 7306–7313.CrossRef
26.
go back to reference Sévellec, F., & Fedorov, A. V. (2015). Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. Earth and Planetary Science Letters, 429, 60–68.CrossRef Sévellec, F., & Fedorov, A. V. (2015). Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. Earth and Planetary Science Letters, 429, 60–68.CrossRef
27.
go back to reference Sarnthein, M., Winn, K., Jung, S., Duplessy, J., Labeyrie, L., Erlenkeuser, H., & Ganssen, G. (1994). Changes in East Atlantic Deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.CrossRef Sarnthein, M., Winn, K., Jung, S., Duplessy, J., Labeyrie, L., Erlenkeuser, H., & Ganssen, G. (1994). Changes in East Atlantic Deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.CrossRef
28.
go back to reference Lynch-Stieglitz, J., Schmidt, M. W., Henry, L. G., Curry, W. B., Skinner, L. C., Mulitza, S., Zhang, R., & Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 7, 144–150.CrossRef Lynch-Stieglitz, J., Schmidt, M. W., Henry, L. G., Curry, W. B., Skinner, L. C., Mulitza, S., Zhang, R., & Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 7, 144–150.CrossRef
29.
go back to reference McManus, J., Francois, R., Gherardi, J., Keigwin, L., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–837.CrossRef McManus, J., Francois, R., Gherardi, J., Keigwin, L., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–837.CrossRef
30.
go back to reference Clark, P. U., Alley, R., Keigwin, L., Licciardi, J., Johnsen, S., & Wang, H. (1996). Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 11, 563–577.CrossRef Clark, P. U., Alley, R., Keigwin, L., Licciardi, J., Johnsen, S., & Wang, H. (1996). Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 11, 563–577.CrossRef
31.
go back to reference Rahmstorf, S., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480.CrossRef Rahmstorf, S., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480.CrossRef
32.
go back to reference Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC. Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC.
33.
go back to reference Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.CrossRef Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.CrossRef
34.
go back to reference Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography, 11, 131–149.CrossRef Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography, 11, 131–149.CrossRef
35.
go back to reference Weijer W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. Hu, L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. Journal of Geophysical Research, in press. https://doi.org/10.1029/2019JC015083 Weijer W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. Hu, L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. Journal of Geophysical Research, in press. https://​doi.​org/​10.​1029/​2019JC015083
36.
go back to reference Sévellec, F., & Fedorov, A. V. (2014). Millennial variability in an idealized ocean model: Predicting the AMOC regime shifts. Journal of Climate, 27, 3551–3564.CrossRef Sévellec, F., & Fedorov, A. V. (2014). Millennial variability in an idealized ocean model: Predicting the AMOC regime shifts. Journal of Climate, 27, 3551–3564.CrossRef
37.
go back to reference Stocker, T. F., & Wright, D. G. (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729–732.CrossRef Stocker, T. F., & Wright, D. G. (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729–732.CrossRef
38.
go back to reference Sévellec, F., & Fedorov, A. V. (2011). Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep Sea Research, 58, 1927–1943.CrossRef Sévellec, F., & Fedorov, A. V. (2011). Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep Sea Research, 58, 1927–1943.CrossRef
39.
go back to reference Bryan, F. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301–304.CrossRef Bryan, F. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301–304.CrossRef
40.
go back to reference Marotzke, J. P., & Willebrand, J. (1991). Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography, 21, 1372–1385.CrossRef Marotzke, J. P., & Willebrand, J. (1991). Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography, 21, 1372–1385.CrossRef
41.
go back to reference Power, S., & Kleeman, R. (1993). Multiple equilibria in a global ocean general circulation model. Journal of Physical Oceanography, 23, 1670–1681.CrossRef Power, S., & Kleeman, R. (1993). Multiple equilibria in a global ocean general circulation model. Journal of Physical Oceanography, 23, 1670–1681.CrossRef
42.
go back to reference Hughes, T. M., & Weaver, A. J. (1994). Multiple equilibria of an asymmetric two-basin ocean model. Journal of Physical Oceanography, 24, 619–637.CrossRef Hughes, T. M., & Weaver, A. J. (1994). Multiple equilibria of an asymmetric two-basin ocean model. Journal of Physical Oceanography, 24, 619–637.CrossRef
43.
go back to reference Knorr, G., & Lohmann, G. (2003). Southern Ocean origin for the resumption of the Atlantic thermohaline circulation during deglaciation. Nature, 424, 532–536.CrossRef Knorr, G., & Lohmann, G. (2003). Southern Ocean origin for the resumption of the Atlantic thermohaline circulation during deglaciation. Nature, 424, 532–536.CrossRef
44.
go back to reference Manabe, S., & Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean–atmosphere model. Journal of Climate, 1, 841–866.CrossRef Manabe, S., & Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean–atmosphere model. Journal of Climate, 1, 841–866.CrossRef
45.
go back to reference Yin, J., & Stouffer, R. J. (2007). Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. Journal of Climate, 20, 4293–4315.CrossRef Yin, J., & Stouffer, R. J. (2007). Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. Journal of Climate, 20, 4293–4315.CrossRef
46.
go back to reference Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38, L10605. Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38, L10605.
47.
go back to reference Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., & Wu, B. (2012). Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences, 109, 6417–6422.CrossRef Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., & Wu, B. (2012). Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences, 109, 6417–6422.CrossRef
48.
go back to reference Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., & Hu, A. (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 1365–1387.CrossRef Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., & Hu, A. (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 1365–1387.CrossRef
49.
go back to reference Manabe, S., & Stouffer, R. J. (1999). Are two modes of thermohaline circulation stable? Tellus A, 51A(3), 400–411.CrossRef Manabe, S., & Stouffer, R. J. (1999). Are two modes of thermohaline circulation stable? Tellus A, 51A(3), 400–411.CrossRef
50.
go back to reference Prange, M., Lohmann, G., & Paul, A. (2003). Influence of vertical mixing on the thermohaline hysteresis: Analysis of an OGCM. Journal of Physical Oceanography, 33, 1707–1721.CrossRef Prange, M., Lohmann, G., & Paul, A. (2003). Influence of vertical mixing on the thermohaline hysteresis: Analysis of an OGCM. Journal of Physical Oceanography, 33, 1707–1721.CrossRef
51.
go back to reference Cessi, P. (1994). A simple box model of stochastically forced thermohaline flow. Journal of Physical Oceanography, 24, 1911–1920.CrossRef Cessi, P. (1994). A simple box model of stochastically forced thermohaline flow. Journal of Physical Oceanography, 24, 1911–1920.CrossRef
52.
go back to reference Timmermann, A., Gildor, H., Schulz, M., & Tziperman, E. (2003). Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. Journal of Climate, 16, 2569–2585.CrossRef Timmermann, A., Gildor, H., Schulz, M., & Tziperman, E. (2003). Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. Journal of Climate, 16, 2569–2585.CrossRef
53.
go back to reference Mikolajewicz, U. (1996). A meltwater induced collapse of the thermohaline circulation and its influence on the oceanic distribution of 614C and 618O. Max-Planck-Institue fur Meteorologie Rep. 189, 25 pp. Mikolajewicz, U. (1996). A meltwater induced collapse of the thermohaline circulation and its influence on the oceanic distribution of 614C and 618O. Max-Planck-Institue fur Meteorologie Rep. 189, 25 pp.
54.
go back to reference Arzel, O., England, M. H., & Sijp, W. P. (2008). Reduced stability of the Atlantic meridional overturning circulation due to wind stress feedback during glacial times. Journal of Climate, 21, 6260–6282.CrossRef Arzel, O., England, M. H., & Sijp, W. P. (2008). Reduced stability of the Atlantic meridional overturning circulation due to wind stress feedback during glacial times. Journal of Climate, 21, 6260–6282.CrossRef
55.
go back to reference Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, 12, 799–811.CrossRef Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, 12, 799–811.CrossRef
57.
go back to reference Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695–705.CrossRef Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695–705.CrossRef
58.
go back to reference Liu, W., & Liu, Z. (2013). A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. Journal of Climate, 26, 1926–1938.CrossRef Liu, W., & Liu, Z. (2013). A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. Journal of Climate, 26, 1926–1938.CrossRef
59.
go back to reference Liu, W., & Liu, Z. (2014). A note on the stability indicator of the Atlantic meridional overturning circulation. Journal of Climate, 27, 969–975.CrossRef Liu, W., & Liu, Z. (2014). A note on the stability indicator of the Atlantic meridional overturning circulation. Journal of Climate, 27, 969–975.CrossRef
60.
go back to reference Liu, W., Liu, Z., & Hu, A. (2013). The stability of an evolving Atlantic meridional over- turning circulation. Geophysical Research Letters, 40, 1562–1568.CrossRef Liu, W., Liu, Z., & Hu, A. (2013). The stability of an evolving Atlantic meridional over- turning circulation. Geophysical Research Letters, 40, 1562–1568.CrossRef
61.
go back to reference Liu, W., Liu, Z., & Brady, E. (2014). Why is the AMOC mono-stable in coupled general circulation models? Journal of Climate, 27, 2427–2443.CrossRef Liu, W., Liu, Z., & Brady, E. (2014). Why is the AMOC mono-stable in coupled general circulation models? Journal of Climate, 27, 2427–2443.CrossRef
62.
go back to reference Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Science Advances, 3, e1601666.CrossRef Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Science Advances, 3, e1601666.CrossRef
63.
go back to reference Liu, W., Liu, Z., Cheng, J., & Hu, H. (2015). On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Climate Dynamics, 44, 1257–1275.CrossRef Liu, W., Liu, Z., Cheng, J., & Hu, H. (2015). On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Climate Dynamics, 44, 1257–1275.CrossRef
64.
go back to reference Mechoso, C. R., et al. (1995). The seasonal cycle over the tropical pacific in general circulation models. Monthly Weather Review, 123, 2825–2838.CrossRef Mechoso, C. R., et al. (1995). The seasonal cycle over the tropical pacific in general circulation models. Monthly Weather Review, 123, 2825–2838.CrossRef
65.
go back to reference Lin, J.-L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. Journal of Climate, 20, 4497–4525.CrossRef Lin, J.-L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. Journal of Climate, 20, 4497–4525.CrossRef
66.
go back to reference Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon-Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., & Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39, L20709. https://doi.org/10.1029/2012GL053763.CrossRef Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon-Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., & Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39, L20709. https://​doi.​org/​10.​1029/​2012GL053763.CrossRef
67.
go back to reference Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic Sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7, 604–610.CrossRef Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic Sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7, 604–610.CrossRef
68.
go back to reference Liu, W., Fedorov, A., & Sévellec, F. (2019). The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic Sea ice decline. Journal of Climate, 32(531), 977–996.CrossRef Liu, W., Fedorov, A., & Sévellec, F. (2019). The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic Sea ice decline. Journal of Climate, 32(531), 977–996.CrossRef
69.
go back to reference van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Munneke, P. K., Noel, B. P. Y., Berg, W. J., Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946.CrossRef van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Munneke, P. K., Noel, B. P. Y., Berg, W. J., Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946.CrossRef
70.
go back to reference Fettweis, X., Franco, B., Tedesco, M., Angelen, J. H., Lenaerts, J. T. M., Broeke, M. R., Gallée, H., Angelen, J. H., & Gall, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 289–469. Fettweis, X., Franco, B., Tedesco, M., Angelen, J. H., Lenaerts, J. T. M., Broeke, M. R., Gallée, H., Angelen, J. H., & Gall, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 289–469.
71.
go back to reference Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., & Mernild, S. H. (2016). Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43, 12252–12260.CrossRef Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., & Mernild, S. H. (2016). Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43, 12252–12260.CrossRef
72.
go back to reference Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC. Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC.
73.
go back to reference Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8, 3071–3104.CrossRef Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8, 3071–3104.CrossRef
75.
go back to reference Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., & Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, L23605. https://doi.org/10.1029/2005GL023655.CrossRef Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., & Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, L23605. https://​doi.​org/​10.​1029/​2005GL023655.CrossRef
76.
go back to reference Weber, M. E., Mayer, L. A., Hillaire-Marcel, C., Bilodeau, G., Rack, F., Hiscott, R. N., & Aksu, A. E. (2001). Derivation of d18O from sediment core log data: Implications for millennial-scale climate change in the Labrador Sea. Paleoceanography, 16, 503–559.CrossRef Weber, M. E., Mayer, L. A., Hillaire-Marcel, C., Bilodeau, G., Rack, F., Hiscott, R. N., & Aksu, A. E. (2001). Derivation of d18O from sediment core log data: Implications for millennial-scale climate change in the Labrador Sea. Paleoceanography, 16, 503–559.CrossRef
77.
go back to reference Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., & Christl, M. (2009). Does sedimentary 231Pa/230Th from the Bermuda rise monitor past Atlantic meridional Overturnin g circulation? Geophysical Research Letters, 36, L12601.CrossRef Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., & Christl, M. (2009). Does sedimentary 231Pa/230Th from the Bermuda rise monitor past Atlantic meridional Overturnin g circulation? Geophysical Research Letters, 36, L12601.CrossRef
78.
go back to reference Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., & Keigwin, L. D. (2016). North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470–474.CrossRef Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., & Keigwin, L. D. (2016). North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470–474.CrossRef
Metadata
Title
Oceans and Rapid Climate Change
Authors
Wei Liu
Alexey Fedorov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-55012-7_6