Skip to main content

2021 | OriginalPaper | Buchkapitel

6. Oceans and Rapid Climate Change

verfasst von : Wei Liu, Alexey Fedorov

Erschienen in: From Hurricanes to Epidemics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A key component of global ocean circulation, the Atlantic Meridional Overturning Circulation (AMOC), is believed to play an important role in abrupt climate changes, both in the past and potentially in the future. As a nonlinear system, the AMOC has multiple equilibrium states characterized by different AMOC strengths, and it has been hypothesized that past abrupt climate changes, including the warm Dansgaard-Oeschger and cold Heinrich events, were related to the transition between such states. The question arises whether an abrupt climate change caused by the AMOC shift could also occur in the future as a result of anthropogenic global warming. Answering this question is complicated by the fact that state-of-the-art coupled climate models typically simulate a mono-stable AMOC for modern climate conditions, which contradicts observationally based indicators suggesting that the AMOC may be bi-stable (i.e., having two stable equilibria). This stability bias is largely due to a common model bias in tropical precipitation—the double Intertropical Convergence Zone problem distorting the Atlantic freshwater budget. After correcting this bias, we find that the AMOC can rapidly weaken and then collapse in experiments with CO2 doubling, which suggests that the risk of AMOC shutdown in the future should not be underestimated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 1519–1522.CrossRef Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 1519–1522.CrossRef
2.
Zurück zum Zitat Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., & McCarthy, G. D. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45, 1527–1533.CrossRef Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., & McCarthy, G. D. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45, 1527–1533.CrossRef
3.
Zurück zum Zitat Srokosz, M. A., & Bryden, H. L. (2015). Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575.CrossRef Srokosz, M. A., & Bryden, H. L. (2015). Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575.CrossRef
4.
Zurück zum Zitat Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V., & Wood, R. A. (2015). Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45, 3299–3316.CrossRef Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V., & Wood, R. A. (2015). Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45, 3299–3316.CrossRef
5.
Zurück zum Zitat Zhang, R., & Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853–1860.CrossRef Zhang, R., & Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853–1860.CrossRef
6.
Zurück zum Zitat Schuster, U., & Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.CrossRef Schuster, U., & Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.CrossRef
7.
Zurück zum Zitat Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8, 1695.CrossRef Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8, 1695.CrossRef
8.
Zurück zum Zitat Schmittner, A. (2005). Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628–633.CrossRef Schmittner, A. (2005). Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628–633.CrossRef
9.
Zurück zum Zitat Timmermann, A., Okumura, Y., An, S., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S., & Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate, 20, 4899–4919.CrossRef Timmermann, A., Okumura, Y., An, S., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S., & Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate, 20, 4899–4919.CrossRef
10.
Zurück zum Zitat Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 383, 218–220.CrossRef Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 383, 218–220.CrossRef
11.
Zurück zum Zitat Clark, P., Pisias, N., Stocher, T., & Weaver, A. (2002). The role of the thermohaline circulation in abrupt climate change. Nature, 451, 863–869.CrossRef Clark, P., Pisias, N., Stocher, T., & Weaver, A. (2002). The role of the thermohaline circulation in abrupt climate change. Nature, 451, 863–869.CrossRef
12.
Zurück zum Zitat Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., & Cheng, J. (2009). Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310–314.CrossRef Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., & Cheng, J. (2009). Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310–314.CrossRef
13.
Zurück zum Zitat Hughen, K. A., Overpeck, J. T., Peterson, L. C., & Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54.CrossRef Hughen, K. A., Overpeck, J. T., Peterson, L. C., & Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54.CrossRef
14.
Zurück zum Zitat Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087.CrossRef Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087.CrossRef
15.
Zurück zum Zitat Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., & Bender, M. L. (1998). Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141–146.CrossRef Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., & Bender, M. L. (1998). Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141–146.CrossRef
16.
Zurück zum Zitat EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–198.CrossRef EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–198.CrossRef
17.
Zurück zum Zitat WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–665.CrossRef WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–665.CrossRef
18.
Zurück zum Zitat Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53.CrossRef Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53.CrossRef
19.
Zurück zum Zitat Liu, W., & Hu, A. (2015). The role of the PMOC in modulating the deglacial shift of the ITCZ. Climate Dynamics, 45, 3019–3034.CrossRef Liu, W., & Hu, A. (2015). The role of the PMOC in modulating the deglacial shift of the ITCZ. Climate Dynamics, 45, 3019–3034.CrossRef
20.
Zurück zum Zitat Crowley, T. (1992). North Atlantic deepwater cools the southern hemisphere. Paleoceanography, 7, 489–497.CrossRef Crowley, T. (1992). North Atlantic deepwater cools the southern hemisphere. Paleoceanography, 7, 489–497.CrossRef
21.
Zurück zum Zitat Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9, 83–104.CrossRef Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9, 83–104.CrossRef
22.
Zurück zum Zitat Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., & Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–554.CrossRef Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., & Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–554.CrossRef
23.
Zurück zum Zitat Broecker, W. S., Peteet, D., & Rind, D. (1985). Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 21–26.CrossRef Broecker, W. S., Peteet, D., & Rind, D. (1985). Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 21–26.CrossRef
24.
Zurück zum Zitat Ganopolski, A., & Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153–158.CrossRef Ganopolski, A., & Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153–158.CrossRef
25.
Zurück zum Zitat Peltier, W. R., & Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophysical Research Letters, 41, 7306–7313.CrossRef Peltier, W. R., & Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophysical Research Letters, 41, 7306–7313.CrossRef
26.
Zurück zum Zitat Sévellec, F., & Fedorov, A. V. (2015). Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. Earth and Planetary Science Letters, 429, 60–68.CrossRef Sévellec, F., & Fedorov, A. V. (2015). Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. Earth and Planetary Science Letters, 429, 60–68.CrossRef
27.
Zurück zum Zitat Sarnthein, M., Winn, K., Jung, S., Duplessy, J., Labeyrie, L., Erlenkeuser, H., & Ganssen, G. (1994). Changes in East Atlantic Deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.CrossRef Sarnthein, M., Winn, K., Jung, S., Duplessy, J., Labeyrie, L., Erlenkeuser, H., & Ganssen, G. (1994). Changes in East Atlantic Deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.CrossRef
28.
Zurück zum Zitat Lynch-Stieglitz, J., Schmidt, M. W., Henry, L. G., Curry, W. B., Skinner, L. C., Mulitza, S., Zhang, R., & Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 7, 144–150.CrossRef Lynch-Stieglitz, J., Schmidt, M. W., Henry, L. G., Curry, W. B., Skinner, L. C., Mulitza, S., Zhang, R., & Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 7, 144–150.CrossRef
29.
Zurück zum Zitat McManus, J., Francois, R., Gherardi, J., Keigwin, L., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–837.CrossRef McManus, J., Francois, R., Gherardi, J., Keigwin, L., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–837.CrossRef
30.
Zurück zum Zitat Clark, P. U., Alley, R., Keigwin, L., Licciardi, J., Johnsen, S., & Wang, H. (1996). Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 11, 563–577.CrossRef Clark, P. U., Alley, R., Keigwin, L., Licciardi, J., Johnsen, S., & Wang, H. (1996). Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 11, 563–577.CrossRef
31.
Zurück zum Zitat Rahmstorf, S., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480.CrossRef Rahmstorf, S., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480.CrossRef
32.
Zurück zum Zitat Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC. Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC.
33.
Zurück zum Zitat Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.CrossRef Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.CrossRef
34.
Zurück zum Zitat Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography, 11, 131–149.CrossRef Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography, 11, 131–149.CrossRef
35.
Zurück zum Zitat Weijer W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. Hu, L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. Journal of Geophysical Research, in press. https://doi.org/10.1029/2019JC015083 Weijer W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. Hu, L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. Journal of Geophysical Research, in press. https://​doi.​org/​10.​1029/​2019JC015083
36.
Zurück zum Zitat Sévellec, F., & Fedorov, A. V. (2014). Millennial variability in an idealized ocean model: Predicting the AMOC regime shifts. Journal of Climate, 27, 3551–3564.CrossRef Sévellec, F., & Fedorov, A. V. (2014). Millennial variability in an idealized ocean model: Predicting the AMOC regime shifts. Journal of Climate, 27, 3551–3564.CrossRef
37.
Zurück zum Zitat Stocker, T. F., & Wright, D. G. (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729–732.CrossRef Stocker, T. F., & Wright, D. G. (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729–732.CrossRef
38.
Zurück zum Zitat Sévellec, F., & Fedorov, A. V. (2011). Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep Sea Research, 58, 1927–1943.CrossRef Sévellec, F., & Fedorov, A. V. (2011). Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep Sea Research, 58, 1927–1943.CrossRef
39.
Zurück zum Zitat Bryan, F. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301–304.CrossRef Bryan, F. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301–304.CrossRef
40.
Zurück zum Zitat Marotzke, J. P., & Willebrand, J. (1991). Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography, 21, 1372–1385.CrossRef Marotzke, J. P., & Willebrand, J. (1991). Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography, 21, 1372–1385.CrossRef
41.
Zurück zum Zitat Power, S., & Kleeman, R. (1993). Multiple equilibria in a global ocean general circulation model. Journal of Physical Oceanography, 23, 1670–1681.CrossRef Power, S., & Kleeman, R. (1993). Multiple equilibria in a global ocean general circulation model. Journal of Physical Oceanography, 23, 1670–1681.CrossRef
42.
Zurück zum Zitat Hughes, T. M., & Weaver, A. J. (1994). Multiple equilibria of an asymmetric two-basin ocean model. Journal of Physical Oceanography, 24, 619–637.CrossRef Hughes, T. M., & Weaver, A. J. (1994). Multiple equilibria of an asymmetric two-basin ocean model. Journal of Physical Oceanography, 24, 619–637.CrossRef
43.
Zurück zum Zitat Knorr, G., & Lohmann, G. (2003). Southern Ocean origin for the resumption of the Atlantic thermohaline circulation during deglaciation. Nature, 424, 532–536.CrossRef Knorr, G., & Lohmann, G. (2003). Southern Ocean origin for the resumption of the Atlantic thermohaline circulation during deglaciation. Nature, 424, 532–536.CrossRef
44.
Zurück zum Zitat Manabe, S., & Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean–atmosphere model. Journal of Climate, 1, 841–866.CrossRef Manabe, S., & Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean–atmosphere model. Journal of Climate, 1, 841–866.CrossRef
45.
Zurück zum Zitat Yin, J., & Stouffer, R. J. (2007). Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. Journal of Climate, 20, 4293–4315.CrossRef Yin, J., & Stouffer, R. J. (2007). Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. Journal of Climate, 20, 4293–4315.CrossRef
46.
Zurück zum Zitat Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38, L10605. Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38, L10605.
47.
Zurück zum Zitat Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., & Wu, B. (2012). Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences, 109, 6417–6422.CrossRef Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., & Wu, B. (2012). Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences, 109, 6417–6422.CrossRef
48.
Zurück zum Zitat Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., & Hu, A. (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 1365–1387.CrossRef Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., & Hu, A. (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 1365–1387.CrossRef
49.
Zurück zum Zitat Manabe, S., & Stouffer, R. J. (1999). Are two modes of thermohaline circulation stable? Tellus A, 51A(3), 400–411.CrossRef Manabe, S., & Stouffer, R. J. (1999). Are two modes of thermohaline circulation stable? Tellus A, 51A(3), 400–411.CrossRef
50.
Zurück zum Zitat Prange, M., Lohmann, G., & Paul, A. (2003). Influence of vertical mixing on the thermohaline hysteresis: Analysis of an OGCM. Journal of Physical Oceanography, 33, 1707–1721.CrossRef Prange, M., Lohmann, G., & Paul, A. (2003). Influence of vertical mixing on the thermohaline hysteresis: Analysis of an OGCM. Journal of Physical Oceanography, 33, 1707–1721.CrossRef
51.
Zurück zum Zitat Cessi, P. (1994). A simple box model of stochastically forced thermohaline flow. Journal of Physical Oceanography, 24, 1911–1920.CrossRef Cessi, P. (1994). A simple box model of stochastically forced thermohaline flow. Journal of Physical Oceanography, 24, 1911–1920.CrossRef
52.
Zurück zum Zitat Timmermann, A., Gildor, H., Schulz, M., & Tziperman, E. (2003). Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. Journal of Climate, 16, 2569–2585.CrossRef Timmermann, A., Gildor, H., Schulz, M., & Tziperman, E. (2003). Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. Journal of Climate, 16, 2569–2585.CrossRef
53.
Zurück zum Zitat Mikolajewicz, U. (1996). A meltwater induced collapse of the thermohaline circulation and its influence on the oceanic distribution of 614C and 618O. Max-Planck-Institue fur Meteorologie Rep. 189, 25 pp. Mikolajewicz, U. (1996). A meltwater induced collapse of the thermohaline circulation and its influence on the oceanic distribution of 614C and 618O. Max-Planck-Institue fur Meteorologie Rep. 189, 25 pp.
54.
Zurück zum Zitat Arzel, O., England, M. H., & Sijp, W. P. (2008). Reduced stability of the Atlantic meridional overturning circulation due to wind stress feedback during glacial times. Journal of Climate, 21, 6260–6282.CrossRef Arzel, O., England, M. H., & Sijp, W. P. (2008). Reduced stability of the Atlantic meridional overturning circulation due to wind stress feedback during glacial times. Journal of Climate, 21, 6260–6282.CrossRef
55.
Zurück zum Zitat Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, 12, 799–811.CrossRef Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, 12, 799–811.CrossRef
57.
Zurück zum Zitat Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695–705.CrossRef Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695–705.CrossRef
58.
Zurück zum Zitat Liu, W., & Liu, Z. (2013). A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. Journal of Climate, 26, 1926–1938.CrossRef Liu, W., & Liu, Z. (2013). A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. Journal of Climate, 26, 1926–1938.CrossRef
59.
Zurück zum Zitat Liu, W., & Liu, Z. (2014). A note on the stability indicator of the Atlantic meridional overturning circulation. Journal of Climate, 27, 969–975.CrossRef Liu, W., & Liu, Z. (2014). A note on the stability indicator of the Atlantic meridional overturning circulation. Journal of Climate, 27, 969–975.CrossRef
60.
Zurück zum Zitat Liu, W., Liu, Z., & Hu, A. (2013). The stability of an evolving Atlantic meridional over- turning circulation. Geophysical Research Letters, 40, 1562–1568.CrossRef Liu, W., Liu, Z., & Hu, A. (2013). The stability of an evolving Atlantic meridional over- turning circulation. Geophysical Research Letters, 40, 1562–1568.CrossRef
61.
Zurück zum Zitat Liu, W., Liu, Z., & Brady, E. (2014). Why is the AMOC mono-stable in coupled general circulation models? Journal of Climate, 27, 2427–2443.CrossRef Liu, W., Liu, Z., & Brady, E. (2014). Why is the AMOC mono-stable in coupled general circulation models? Journal of Climate, 27, 2427–2443.CrossRef
62.
Zurück zum Zitat Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Science Advances, 3, e1601666.CrossRef Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Science Advances, 3, e1601666.CrossRef
63.
Zurück zum Zitat Liu, W., Liu, Z., Cheng, J., & Hu, H. (2015). On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Climate Dynamics, 44, 1257–1275.CrossRef Liu, W., Liu, Z., Cheng, J., & Hu, H. (2015). On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Climate Dynamics, 44, 1257–1275.CrossRef
64.
Zurück zum Zitat Mechoso, C. R., et al. (1995). The seasonal cycle over the tropical pacific in general circulation models. Monthly Weather Review, 123, 2825–2838.CrossRef Mechoso, C. R., et al. (1995). The seasonal cycle over the tropical pacific in general circulation models. Monthly Weather Review, 123, 2825–2838.CrossRef
65.
Zurück zum Zitat Lin, J.-L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. Journal of Climate, 20, 4497–4525.CrossRef Lin, J.-L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. Journal of Climate, 20, 4497–4525.CrossRef
66.
Zurück zum Zitat Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon-Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., & Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39, L20709. https://doi.org/10.1029/2012GL053763.CrossRef Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon-Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., & Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39, L20709. https://​doi.​org/​10.​1029/​2012GL053763.CrossRef
67.
Zurück zum Zitat Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic Sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7, 604–610.CrossRef Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic Sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7, 604–610.CrossRef
68.
Zurück zum Zitat Liu, W., Fedorov, A., & Sévellec, F. (2019). The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic Sea ice decline. Journal of Climate, 32(531), 977–996.CrossRef Liu, W., Fedorov, A., & Sévellec, F. (2019). The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic Sea ice decline. Journal of Climate, 32(531), 977–996.CrossRef
69.
Zurück zum Zitat van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Munneke, P. K., Noel, B. P. Y., Berg, W. J., Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946.CrossRef van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Munneke, P. K., Noel, B. P. Y., Berg, W. J., Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946.CrossRef
70.
Zurück zum Zitat Fettweis, X., Franco, B., Tedesco, M., Angelen, J. H., Lenaerts, J. T. M., Broeke, M. R., Gallée, H., Angelen, J. H., & Gall, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 289–469. Fettweis, X., Franco, B., Tedesco, M., Angelen, J. H., Lenaerts, J. T. M., Broeke, M. R., Gallée, H., Angelen, J. H., & Gall, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 289–469.
71.
Zurück zum Zitat Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., & Mernild, S. H. (2016). Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43, 12252–12260.CrossRef Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., & Mernild, S. H. (2016). Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43, 12252–12260.CrossRef
72.
Zurück zum Zitat Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC. Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC.
73.
Zurück zum Zitat Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8, 3071–3104.CrossRef Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8, 3071–3104.CrossRef
75.
Zurück zum Zitat Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., & Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, L23605. https://doi.org/10.1029/2005GL023655.CrossRef Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., & Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, L23605. https://​doi.​org/​10.​1029/​2005GL023655.CrossRef
76.
Zurück zum Zitat Weber, M. E., Mayer, L. A., Hillaire-Marcel, C., Bilodeau, G., Rack, F., Hiscott, R. N., & Aksu, A. E. (2001). Derivation of d18O from sediment core log data: Implications for millennial-scale climate change in the Labrador Sea. Paleoceanography, 16, 503–559.CrossRef Weber, M. E., Mayer, L. A., Hillaire-Marcel, C., Bilodeau, G., Rack, F., Hiscott, R. N., & Aksu, A. E. (2001). Derivation of d18O from sediment core log data: Implications for millennial-scale climate change in the Labrador Sea. Paleoceanography, 16, 503–559.CrossRef
77.
Zurück zum Zitat Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., & Christl, M. (2009). Does sedimentary 231Pa/230Th from the Bermuda rise monitor past Atlantic meridional Overturnin g circulation? Geophysical Research Letters, 36, L12601.CrossRef Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., & Christl, M. (2009). Does sedimentary 231Pa/230Th from the Bermuda rise monitor past Atlantic meridional Overturnin g circulation? Geophysical Research Letters, 36, L12601.CrossRef
78.
Zurück zum Zitat Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., & Keigwin, L. D. (2016). North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470–474.CrossRef Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., & Keigwin, L. D. (2016). North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470–474.CrossRef
Metadaten
Titel
Oceans and Rapid Climate Change
verfasst von
Wei Liu
Alexey Fedorov
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-55012-7_6