Skip to main content
Top
Published in: Journal of Iron and Steel Research International 3/2023

18-11-2022 | Original Paper

On hot deformation behavior and workability characteristic of 42CrMo4 steel based on microstructure and processing map

Authors: Min Qi, Hong-yan Wu, Ying Dong, Lin-xiu Du

Published in: Journal of Iron and Steel Research International | Issue 3/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to determine the safe region of 42CrMo4 steel during hot working and obtain excellent workability, the hot deformation behavior at the temperatures of 850–1150 °C and the strain rates of 0.01–10 s−1 was investigated through single-pass compression test of thermo-simulation. Through observing and analyzing the true stress–strain curves, the conclusion may be drawn that the flow stress value increases with the decrease in deformation temperature and the increase in strain rate. Raising temperature and reducing strain rate are conductive to dynamic recrystallization (DRX) nucleating and growing, but adiabatic heating caused by higher strain rate can also promote it. Since the Zener–Hollomon (Z) value and dynamic recrystallized grain size (DDRX) have completely opposite trends with deformation condition parameters, the expression of Z value and DDRX can be determined as: \(D_{{{\text{DRX}}}} = 15,567.645Z^{ - 0.2174}\). The processing map and instability map constructed at a strain of 0.9 show that the suitable window for hot working with a true strain of 0.9 is in the temperature range of 970–1150 °C and strain rate range of 0.01–0.25 s−1, as well as at the temperature of 1150 °C and strain rate range of 0.25–10 s−1. The instability phenomenon appears in the process interval of 850–1096 °C and 0.22–10 s−1.
Literature
[1]
go back to reference P. Stark, U. Fritsching, M. Hunkel, D. Hansmann, Materialwissenschaft Und Werkstofftechnik 43 (2012) 56–62.CrossRef P. Stark, U. Fritsching, M. Hunkel, D. Hansmann, Materialwissenschaft Und Werkstofftechnik 43 (2012) 56–62.CrossRef
[2]
go back to reference R. Pandiyarajan, K. Arumugam, M.P. Prabakaran, K.V. Kumar, Materialtoday Proceed. 37 (2021) 1957–1962. R. Pandiyarajan, K. Arumugam, M.P. Prabakaran, K.V. Kumar, Materialtoday Proceed. 37 (2021) 1957–1962.
[3]
[4]
[6]
go back to reference S.K. Rajput, G.P. Chaudhari, S.K. Nath, J. Mater. Process. Technol. 237 (2016) 113–125.CrossRef S.K. Rajput, G.P. Chaudhari, S.K. Nath, J. Mater. Process. Technol. 237 (2016) 113–125.CrossRef
[8]
[9]
go back to reference Z.W. Zhu, Y.S. Lu, Q.J. Xie, D.Y. Li, N. Gao, Mater. Des. 119 (2017) 171–179.CrossRef Z.W. Zhu, Y.S. Lu, Q.J. Xie, D.Y. Li, N. Gao, Mater. Des. 119 (2017) 171–179.CrossRef
[10]
go back to reference F.C. Qin, H.P. Qi, C.Y. Liu, H.Q. Qi, Z.B. Meng, Adv. Mater. Sci. Eng. 2021 (2021) 6638505.CrossRef F.C. Qin, H.P. Qi, C.Y. Liu, H.Q. Qi, Z.B. Meng, Adv. Mater. Sci. Eng. 2021 (2021) 6638505.CrossRef
[11]
go back to reference H.C. Ji, H.L. Duan, Y.G. Li, W.D. Li, X.M. Huang, W.C. Pei, Y.H. Lu, J. Mater. Res. Technol. 9 (2020) 7210–7224.CrossRef H.C. Ji, H.L. Duan, Y.G. Li, W.D. Li, X.M. Huang, W.C. Pei, Y.H. Lu, J. Mater. Res. Technol. 9 (2020) 7210–7224.CrossRef
[12]
[13]
[15]
go back to reference S.L. Wang, M.X. Zhang, H.C. Wu, B. Yang, Mater. Charact. 118 (2016) 92–101.CrossRef S.L. Wang, M.X. Zhang, H.C. Wu, B. Yang, Mater. Charact. 118 (2016) 92–101.CrossRef
[16]
go back to reference G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang, Y.W. Zhang, J. Zhou, Mater. Sci. Eng. A 528 (2011) 4643–4651.CrossRef G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang, Y.W. Zhang, J. Zhou, Mater. Sci. Eng. A 528 (2011) 4643–4651.CrossRef
[17]
go back to reference C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, P.C. Li, Mater. Sci. Eng. A 797 (2020) 139925.CrossRef C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, P.C. Li, Mater. Sci. Eng. A 797 (2020) 139925.CrossRef
[18]
go back to reference H. Jiang, J.X. Dong, M.C. Zhang, Z.H. Yao, J. Alloy. Compd. 735 (2018) 1520–1535.CrossRef H. Jiang, J.X. Dong, M.C. Zhang, Z.H. Yao, J. Alloy. Compd. 735 (2018) 1520–1535.CrossRef
[19]
go back to reference Y.G. Yang, W.Z. Mu, X.Q. Li, H.T. Jiang, M. Wang, Z.L. Mi, X.P. Mao, J. Iron Steel Res. Int. 29 (2022) 316–326.CrossRef Y.G. Yang, W.Z. Mu, X.Q. Li, H.T. Jiang, M. Wang, Z.L. Mi, X.P. Mao, J. Iron Steel Res. Int. 29 (2022) 316–326.CrossRef
[20]
go back to reference S. Mandal, M. Jayalakshmi, A.K. Bhaduri, V. Subramanya Sarma, Metall. Mater. Trans. A 45 (2014) 5645–5656.CrossRef S. Mandal, M. Jayalakshmi, A.K. Bhaduri, V. Subramanya Sarma, Metall. Mater. Trans. A 45 (2014) 5645–5656.CrossRef
[21]
go back to reference H. Jiang, J.X. Dong, M.C. Zhang, Z.H. Yao, Metall. Mater. Trans. A 47 (2016) 5071–5087.CrossRef H. Jiang, J.X. Dong, M.C. Zhang, Z.H. Yao, Metall. Mater. Trans. A 47 (2016) 5071–5087.CrossRef
[22]
[23]
go back to reference W.M. Xiong, R.B. Song, P. Yu, Z.J. Liu, S. Qin, Y.C. Zhang, S.Y. Quan, W.F. Huo, Z.Y. Zhao, S.R. Su, C. Wei, Steel Res. Int. 92 (2021) 2000225.CrossRef W.M. Xiong, R.B. Song, P. Yu, Z.J. Liu, S. Qin, Y.C. Zhang, S.Y. Quan, W.F. Huo, Z.Y. Zhao, S.R. Su, C. Wei, Steel Res. Int. 92 (2021) 2000225.CrossRef
[25]
go back to reference Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.CrossRef
[26]
go back to reference S.V.S. Narayana Murty, B. Nageswara Rao, J. Mater. Sci. Letter. 17 (1998) 1203–1205.CrossRef S.V.S. Narayana Murty, B. Nageswara Rao, J. Mater. Sci. Letter. 17 (1998) 1203–1205.CrossRef
[27]
go back to reference Y.P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang, L. Yang, Y.Y. Zhong, Trans. Nonferrous Metal. Soc. China 25 (2015) 1831–1839.CrossRef Y.P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang, L. Yang, Y.Y. Zhong, Trans. Nonferrous Metal. Soc. China 25 (2015) 1831–1839.CrossRef
[28]
go back to reference W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang, H. Yu, J. Mater. Sci. Technol. 35 (2019) 1198–1209.CrossRef W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang, H. Yu, J. Mater. Sci. Technol. 35 (2019) 1198–1209.CrossRef
[29]
[30]
go back to reference S. Ramanathan, R. Karthikeyan, M. Gupta, J. Mater. Process. Technol. 183 (2007) 104–110.CrossRef S. Ramanathan, R. Karthikeyan, M. Gupta, J. Mater. Process. Technol. 183 (2007) 104–110.CrossRef
[31]
go back to reference A. Chiba, S.H. Lee, H. Matsumoto, M. Nakamura, Mater. Sci. Eng. A 513–514 (2009) 286–293.CrossRef A. Chiba, S.H. Lee, H. Matsumoto, M. Nakamura, Mater. Sci. Eng. A 513–514 (2009) 286–293.CrossRef
[32]
go back to reference A. Hor, F. Morel, J. Lou Lebrun, G. Germain, Int. J. Mech. Sci. 67 (2013) 108–122.CrossRef A. Hor, F. Morel, J. Lou Lebrun, G. Germain, Int. J. Mech. Sci. 67 (2013) 108–122.CrossRef
Metadata
Title
On hot deformation behavior and workability characteristic of 42CrMo4 steel based on microstructure and processing map
Authors
Min Qi
Hong-yan Wu
Ying Dong
Lin-xiu Du
Publication date
18-11-2022
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 3/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00857-6

Other articles of this Issue 3/2023

Journal of Iron and Steel Research International 3/2023 Go to the issue

Premium Partners