Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 3/2023

17-03-2022 | Original Article

On some variational principles in micropolar theories of single-layer thin bodies

Authors: M. Nikabadze, A. Ulukhanyan

Published in: Continuum Mechanics and Thermodynamics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The generalized Reissner-type operator of three-dimensional micropolar mechanics of solids is presented, on the basis of which the generalized Reissner-type operator of three-dimensional micropolar mechanics of thin solids with one small size is obtained under the new parameterization of the domains of these bodies. From the last Reissner-type operator, in turn, the generalized Reissner-type variational principle of three-dimensional micropolar mechanics of thin solids with one small size is derived under the new parametrization of the domains of these bodies. It should be noted that the advantage of the new parameterization is that it is experimentally more accessible than other parameterizations (Nikabadze in Development of the method of orthogonal polynomials in the classical and micropolar mechanics of elastic thin bodies, MSU Publishing House, 2014; Contemp Math. Fundam Dir 55:3–194, 2015; J Math Sci 225:1, 2017). Further, applying the method of orthogonal polynomials (expansion of unknown quantities in series in terms of a system of orthogonal polynomials), from the generalized Reissner-type variational principle of three-dimensional micropolar mechanics of thin solids with one small size under the new parameterization of the domains of these bodies, the Reissner variational principle of micropolar mechanics of thin solids with one small size in the moments with respect to the system of Legendre polynomials is derived. In addition, the method is described for obtaining the variational principles of Lagrange and Castigliano of micropolar mechanics of thin solid with one small size under the new parametrization of the domains of these bodies in moments with respect to systems of the first and second kind Chebyshev polynomials. The paper is a continuation of the work “Nikabadze, Ulukhanyan, On some variational principles in the three-dimensional micropolar theories of solid”; therefore, before reading this paper, the authors invite the interested reader to familiarize themselves with the work (Nikabadze and Ulukhanyan in On some variational principles in the three-dimensional micropolar theories of solids, submitted).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A three-dimensional body, one size of which is smaller than the others, is called a thin body with one small size, and a solid body, two sizes of which are small compared to the third dimension, is called a thin body with two small dimensions.
 
2
 The dependence of the quantities on \(x'\) means their dependence on the curvilinear coordinates \(x^1\) and \(x^2\) of the base surface. The usual rules of tensor calculus used in [2, 3, 21, 2427] are applied. The notations and agreements adopted in the work [4] and also in previously published works are preserved [14, 2947].
 
Literature
4.
go back to reference Nikabadze, M., Ulukhanyan, A.: Some variational principles in thethree-dimensional micropolar theories of solids and thin solids. Advanced Structured Materials, pp. 193–249 (2022) Nikabadze, M., Ulukhanyan, A.: Some variational principles in thethree-dimensional micropolar theories of solids and thin solids. Advanced Structured Materials, pp. 193–249 (2022)
5.
go back to reference Bersani, A.M., Giorgio, I., Tomassetti, G.: Buckling of an elastic hemispherical shell with an obstacle. Cont. Mech. Thermodyn. 25(2), 443–67 (2013)MathSciNetCrossRefMATH Bersani, A.M., Giorgio, I., Tomassetti, G.: Buckling of an elastic hemispherical shell with an obstacle. Cont. Mech. Thermodyn. 25(2), 443–67 (2013)MathSciNetCrossRefMATH
6.
go back to reference Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 1–28 (2016) Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 1–28 (2016)
7.
go back to reference Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 15(147), 94–109 (2018) Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 15(147), 94–109 (2018)
8.
go back to reference Cazzani, A., Rizzi, N.L., Stochino, F., Turco, E.: Modal analysis of laminates by a mixed assumed-strain finite element model. Math. Mech. Solids 23(1), 99–119 (2018)MathSciNetCrossRefMATH Cazzani, A., Rizzi, N.L., Stochino, F., Turco, E.: Modal analysis of laminates by a mixed assumed-strain finite element model. Math. Mech. Solids 23(1), 99–119 (2018)MathSciNetCrossRefMATH
9.
go back to reference Cazzani, A., Serra, M., Stochino, F., Turco, E.: A refined assumed strain finite element model for statics and dynamics of laminated plates. Cont. Mech. Thermodyn. 32(3), 665–92 (2020)MathSciNetCrossRef Cazzani, A., Serra, M., Stochino, F., Turco, E.: A refined assumed strain finite element model for statics and dynamics of laminated plates. Cont. Mech. Thermodyn. 32(3), 665–92 (2020)MathSciNetCrossRef
10.
go back to reference Yildizdag, M.E., Demirtas, M., Ergin, A.: Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Cont. Mech. Thermodyn. 32(3), 607–20 (2020)MathSciNetCrossRef Yildizdag, M.E., Demirtas, M., Ergin, A.: Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Cont. Mech. Thermodyn. 32(3), 607–20 (2020)MathSciNetCrossRef
11.
go back to reference Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local B formulation for isogeometric Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 15(332), 462–87 (2018)MathSciNetCrossRefADSMATH Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local B formulation for isogeometric Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 15(332), 462–87 (2018)MathSciNetCrossRefADSMATH
12.
go back to reference Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 1(356), 354–86 (2019)CrossRefADSMATH Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 1(356), 354–86 (2019)CrossRefADSMATH
13.
go back to reference Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput. Methods Appl. Mech. Eng. 1(346), 913–51 (2019)CrossRefADSMATH Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput. Methods Appl. Mech. Eng. 1(346), 913–51 (2019)CrossRefADSMATH
14.
go back to reference Greco, L., Cuomo, M.: An implicit G1-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff–Love shell assemblies. Comput. Methods Appl. Mech. Eng. 1(373), 113476 (2021)CrossRefADSMATH Greco, L., Cuomo, M.: An implicit G1-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff–Love shell assemblies. Comput. Methods Appl. Mech. Eng. 1(373), 113476 (2021)CrossRefADSMATH
16.
17.
go back to reference Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int. J. Non-Linear Mech. 1(123), 103481 (2020) Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int. J. Non-Linear Mech. 1(123), 103481 (2020)
19.
go back to reference Washizy, K.: Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon, Oxford (1982) Washizy, K.: Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon, Oxford (1982)
20.
go back to reference Vanko, V.I.: Variational principles and problems of mathematical physics. MSU Publishing House of BMSTU (2010). (in Russian) Vanko, V.I.: Variational principles and problems of mathematical physics. MSU Publishing House of BMSTU (2010). (in Russian)
21.
go back to reference Vekua, I.N.: Variational Principles of Constructing the Theory of Shells. Tbilisi University Publishing House, Tbilisi (1970). (in Russian) Vekua, I.N.: Variational Principles of Constructing the Theory of Shells. Tbilisi University Publishing House, Tbilisi (1970). (in Russian)
22.
go back to reference Pobedrya, B.E.: Mechanics of Composite Materials. MSU Publishing House, Moscow (1984). (in Russian) Pobedrya, B.E.: Mechanics of Composite Materials. MSU Publishing House, Moscow (1984). (in Russian)
23.
go back to reference Pobedrya, B.E.: Numerical Methods in the Theory of Elasticity and Plasticity, 2nd edn. MSU Publishing House, Moscow (1995). (in Russian) Pobedrya, B.E.: Numerical Methods in the Theory of Elasticity and Plasticity, 2nd edn. MSU Publishing House, Moscow (1995). (in Russian)
24.
go back to reference Vekua, I.N.: Fundamentals of Tensor Analysis and Covariant Theory. Nauka, Moscow (1978). (in Russian) Vekua, I.N.: Fundamentals of Tensor Analysis and Covariant Theory. Nauka, Moscow (1978). (in Russian)
25.
go back to reference Vekua, I.N.: Some general methods for constructing various variants of the theory of shells. MSU Publishing House, Nauka (1982). (in Russian) Vekua, I.N.: Some general methods for constructing various variants of the theory of shells. MSU Publishing House, Nauka (1982). (in Russian)
26.
go back to reference Lurie, A.I.: Nonlinear Theory of Elasticity. Nauka, Moscow (1980). (in Russian) Lurie, A.I.: Nonlinear Theory of Elasticity. Nauka, Moscow (1980). (in Russian)
27.
go back to reference Pobedrya, B.E.: Lectures on Tensor Analysis. MSU Publishing House (1986). (in Russian) Pobedrya, B.E.: Lectures on Tensor Analysis. MSU Publishing House (1986). (in Russian)
28.
go back to reference Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Nauka, Moscow (1976). (in Russian) Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Nauka, Moscow (1976). (in Russian)
29.
go back to reference Nikabadze, M.U.: A variant of the theory of multilayer structures. Mech. Solids 1, 143–158 (2001) Nikabadze, M.U.: A variant of the theory of multilayer structures. Mech. Solids 1, 143–158 (2001)
30.
go back to reference Nikabadze, M.U.: To a version of the theory of multilayer structures. Mech. Solids 36(1), 119–129 (2001) Nikabadze, M.U.: To a version of the theory of multilayer structures. Mech. Solids 36(1), 119–129 (2001)
31.
go back to reference Nikabadze, M.U., Ulukhanyan, A.R.: Statements of problems for a thin deformable three-dimensional body. Mosc. Univer. Bull., Math. Mech. 5, 43–49 (2005) (in Russian) Nikabadze, M.U., Ulukhanyan, A.R.: Statements of problems for a thin deformable three-dimensional body. Mosc. Univer. Bull., Math. Mech. 5, 43–49 (2005) (in Russian)
32.
go back to reference Nikabadze, M.U.: A variant of the system of equations of the theory of thin bodies. Mosc. Univer. Bull., Math. Mech. 1, 30–35 (2006). (in Russian) Nikabadze, M.U.: A variant of the system of equations of the theory of thin bodies. Mosc. Univer. Bull., Math. Mech. 1, 30–35 (2006). (in Russian)
33.
go back to reference Nikabadze, M.U.: Application of a system of Chebyshev polynomials to the theory of thin bodies. Mosc. Univer. Bull., Math. Mech. 5, 56–63 (2007). (in Russian) Nikabadze, M.U.: Application of a system of Chebyshev polynomials to the theory of thin bodies. Mosc. Univer. Bull., Math. Mech. 5, 56–63 (2007). (in Russian)
35.
go back to reference Nikabadze, M.U.: Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind. Mech. Solids 42(3), 391–421 (2007)CrossRefADS Nikabadze, M.U.: Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind. Mech. Solids 42(3), 391–421 (2007)CrossRefADS
37.
40.
go back to reference Nikabadze, M.U., Ulukhanyan, A.R.: Mathematical modeling of elastic thin bodies with one small size. In: Altenbach, H., Müller, W., Abali, B. (eds,) Higher Gradient Materials and Related Generalized Continua. Advanced Structured Materials, vol. 120, pp. 155–199 (2019). https://doi.org/10.1007/978-3-030-30406-5_9 Nikabadze, M.U., Ulukhanyan, A.R.: Mathematical modeling of elastic thin bodies with one small size. In: Altenbach, H., Müller, W., Abali, B. (eds,) Higher Gradient Materials and Related Generalized Continua. Advanced Structured Materials, vol. 120, pp. 155–199 (2019). https://​doi.​org/​10.​1007/​978-3-030-30406-5_​9
44.
go back to reference Nikabadze, M.U.: On compatibility conditions in linear micropolar theory. Mosc. Univer. Bull., Math. Mech. 5, 48–51 (2010). (in Russian) Nikabadze, M.U.: On compatibility conditions in linear micropolar theory. Mosc. Univer. Bull., Math. Mech. 5, 48–51 (2010). (in Russian)
45.
go back to reference Nikabadze, M.U.: On compatibility conditions and equations of motion in the micropolar linear theory of elasticity. Mosc. Univ. Bull., Math. Mech. 1, 63–66 (2012)MathSciNetMATH Nikabadze, M.U.: On compatibility conditions and equations of motion in the micropolar linear theory of elasticity. Mosc. Univ. Bull., Math. Mech. 1, 63–66 (2012)MathSciNetMATH
46.
go back to reference Nikabadze, M.U.: Compatibility conditions and equations of motion in the linear micropolar theory of elasticity. Mosc. Univ. Mech. Bull. Allerton Press, Inc. 67(1), 18–22 (2012) Nikabadze, M.U.: Compatibility conditions and equations of motion in the linear micropolar theory of elasticity. Mosc. Univ. Mech. Bull. Allerton Press, Inc. 67(1), 18–22 (2012)
47.
go back to reference Nikabadze, M.U.: Eigenvalue problems of a tensor and a tensor-block matrix (TMB) of any even rank with some applications in mechanics. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 279–317 (2016). https://doi.org/10.1007/978-3-319-31721-2_14 Nikabadze, M.U.: Eigenvalue problems of a tensor and a tensor-block matrix (TMB) of any even rank with some applications in mechanics. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 279–317 (2016). https://​doi.​org/​10.​1007/​978-3-319-31721-2_​14
48.
49.
go back to reference Altenbach, H., Eremeyev, V.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Compl. Syst. 3(3), 273–83 (2015)MathSciNetCrossRefMATH Altenbach, H., Eremeyev, V.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Compl. Syst. 3(3), 273–83 (2015)MathSciNetCrossRefMATH
50.
go back to reference Chróścielewski, J., dell’Isola, F., Eremeyev, V.A., Sabik, A.: On rotational instability within the nonlinear six-parameter shell theory. Int. J. Solids Struct. 1(196), 179–89 (2020) Chróścielewski, J., dell’Isola, F., Eremeyev, V.A., Sabik, A.: On rotational instability within the nonlinear six-parameter shell theory. Int. J. Solids Struct. 1(196), 179–89 (2020)
51.
go back to reference Giorgio, I., De Angelo, M., Turco, E., Misra, A.: A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Cont. Mech. Thermodyn. 32(5), 1357–69 (2020)MathSciNetCrossRef Giorgio, I., De Angelo, M., Turco, E., Misra, A.: A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Cont. Mech. Thermodyn. 32(5), 1357–69 (2020)MathSciNetCrossRef
52.
go back to reference Giorgio, I., Spagnuolo, M., Andreaus, U., Scerrato, D., Bersani, A.M.: In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. Math. Mech. Solids 26(7), 1074–103 (2021)MathSciNetCrossRefMATH Giorgio, I., Spagnuolo, M., Andreaus, U., Scerrato, D., Bersani, A.M.: In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. Math. Mech. Solids 26(7), 1074–103 (2021)MathSciNetCrossRefMATH
53.
go back to reference Cosserat, E., Cosserat, F.: Theorie des Corp Dcformablcs. Librairie Scientifique A, Hermann et Fils, Paris (1909)MATH Cosserat, E., Cosserat, F.: Theorie des Corp Dcformablcs. Librairie Scientifique A, Hermann et Fils, Paris (1909)MATH
54.
go back to reference Le Roux, J.: Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann. Scient. Ecole Norm. Sup. Sér. 3(28), 523–579 (1911) Le Roux, J.: Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann. Scient. Ecole Norm. Sup. Sér. 3(28), 523–579 (1911)
55.
go back to reference Le Roux, J.: Recherches sur géométrie des déformations finies. Ann. Sci. Ecole Norm. Sup. Sér. 3(30), 193–245 (1913) Le Roux, J.: Recherches sur géométrie des déformations finies. Ann. Sci. Ecole Norm. Sup. Sér. 3(30), 193–245 (1913)
56.
go back to reference Jaramillo, T.J.: A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago, vol. 98 (1929) Jaramillo, T.J.: A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago, vol. 98 (1929)
58.
go back to reference Toupin, R.A.: Theories of elasticity with couple-stresses. Arch. Rat. Mech. Anal. 17(2), 85–112 (1964)CrossRefMATH Toupin, R.A.: Theories of elasticity with couple-stresses. Arch. Rat. Mech. Anal. 17(2), 85–112 (1964)CrossRefMATH
59.
go back to reference Eringen, A.C.: Microcontinuum Field Theories. 1. Foundation and Solids. Springer, New York (1999) Eringen, A.C.: Microcontinuum Field Theories. 1. Foundation and Solids. Springer, New York (1999)
64.
go back to reference dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Abrio Piola. Math. Mech. Solids 20(8), 887–928 (2014). https://doi.org/10.1177/1081286513509811 dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Abrio Piola. Math. Mech. Solids 20(8), 887–928 (2014). https://​doi.​org/​10.​1177/​1081286513509811​
65.
66.
67.
go back to reference Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Compl. Syst. 6(3), 213–50 (2018)MathSciNetCrossRefMATH Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Compl. Syst. 6(3), 213–50 (2018)MathSciNetCrossRefMATH
68.
go back to reference Eugster, S., dell’Isola, F., Steigmann, D.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Compl. Syst. 7(1), 75–98 (2019) Eugster, S., dell’Isola, F., Steigmann, D.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Compl. Syst. 7(1), 75–98 (2019)
69.
go back to reference Novatskiy, V.: Theory of Elasticity. MIR, Moscow (1975). (in Russian) Novatskiy, V.: Theory of Elasticity. MIR, Moscow (1975). (in Russian)
70.
go back to reference Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Cont. Mech. Thermodyn. 31(1), 33–45 (2019)MathSciNetCrossRef Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Cont. Mech. Thermodyn. 31(1), 33–45 (2019)MathSciNetCrossRef
71.
go back to reference Barchiesi, E., dell’Isola, F., Hild, F.: On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int. J. Solids Struct. 1(208), 49–62 (2021) Barchiesi, E., dell’Isola, F., Hild, F.: On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int. J. Solids Struct. 1(208), 49–62 (2021)
72.
go back to reference Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A: Math., Phys. Eng. Sci. 473(2207), 20170636 (2017)MathSciNetCrossRefADSMATH Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A: Math., Phys. Eng. Sci. 473(2207), 20170636 (2017)MathSciNetCrossRefADSMATH
73.
go back to reference Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Cont. Mech. Thermodyn. 33(4), 1063–82 (2021)MathSciNetCrossRef Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Cont. Mech. Thermodyn. 33(4), 1063–82 (2021)MathSciNetCrossRef
74.
go back to reference Giorgio, I., Varano, V., dell’Isola, F., Rizzi, N.L.: Two layers pantographs: a 2D continuum model accounting for the beams’ offset and relative rotations as averages in SO (3) Lie groups. Int. J. Solids Struct. 1(216), 43–58 (2021) Giorgio, I., Varano, V., dell’Isola, F., Rizzi, N.L.: Two layers pantographs: a 2D continuum model accounting for the beams’ offset and relative rotations as averages in SO (3) Lie groups. Int. J. Solids Struct. 1(216), 43–58 (2021)
75.
go back to reference Scerrato, D., Giorgio, I.: Equilibrium of two-dimensional cycloidal pantographic metamaterials in three-dimensional deformations. Symmetry 11(12), 1523 (2019)CrossRefADS Scerrato, D., Giorgio, I.: Equilibrium of two-dimensional cycloidal pantographic metamaterials in three-dimensional deformations. Symmetry 11(12), 1523 (2019)CrossRefADS
76.
go back to reference Giorgio, I., Rizzi, N.L., Andreaus, U., Steigmann, D.J.: A two-dimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers. Math. Mech. Compl. Syst. 7(4), 311–25 (2019)MathSciNetCrossRefMATH Giorgio, I., Rizzi, N.L., Andreaus, U., Steigmann, D.J.: A two-dimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers. Math. Mech. Compl. Syst. 7(4), 311–25 (2019)MathSciNetCrossRefMATH
77.
go back to reference Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 1(118), 1–4 (2017) Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 1(118), 1–4 (2017)
79.
go back to reference Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 1–6 (2018)MathSciNetCrossRefMATH Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 1–6 (2018)MathSciNetCrossRefMATH
Metadata
Title
On some variational principles in micropolar theories of single-layer thin bodies
Authors
M. Nikabadze
A. Ulukhanyan
Publication date
17-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 3/2023
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01089-5

Other articles of this Issue 3/2023

Continuum Mechanics and Thermodynamics 3/2023 Go to the issue

Premium Partners